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Abstract 

The lattice Boltzmann (LB) method based on the 
D2Q9 model with a single relaxation time is used to 
simulate the flow field around a square obstacle inside a 
two-dimensional microchannel. The simulation results 
are described the dynamical behavior of the flow in a 
range of Reynolds number between 1 and 300. It is found 
that this approach enhances the understanding of the flow 
pattern in highly complex geometries and the results can 
provide useful information in the design of the realistic 
model. 
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1. Introduction 
 In recent years the lattice Boltzmann method (LBM) 
has developed efficient numerical tool for simulating 
fluid flows and transport phenomena based on kinetic 
equations and statistical physics [1-4]. Typical examples 
are steady plane Poiseuille flow, thermal viscous cavity 
flow, multiphase flows and high-speed compressible 
flows, etc. The success of this method can be party 
attributed to the particle based approach which is directly 
inherited from its predecessor, the lattice gas automata 
(LGA). Unlike LGA , the LBM simulates a flow system 
by tracking the evolution of particle distributions instead 
of tracking single particles. Compared with other 
traditional computational fluid dynamics method, such as 
the finite difference schemes, the major advantage of 
LBM is that it provides a good insight into the underlying 
microscopic dynamics of the physical system 
investigated, whereas most methods focus only on the 
solution of the macroscopic equations [5-7].   
 The flow thought square obstacle  in a two-
dimensional (2D) channel has been an attraction in all 

kinds of fluid mechanical investigations for a long time. 
Much work has been done in simulating 2D flow around 
such bluff obstacles in the past. In particular, the 2D flow 
around circular cylinders has been studied extensively. In 
contrast to many theoretical, experimental, and numerical 
data on the flow around circular cylinder over a wide 
range of Reynolds numbers, there are very few similar 
studies and information on the flow around square bodies 
[8-10]. Previous investigations of the flow around 
circular cylinders performed with the LBM clearly show 
that this method is an appropriate tool for such kinds of 
flows [11]. 
 In this work we investigate the flow pattern 
phenomena and the topology of the vortex structure 
behind the square obstacle in a 2D microchannel for the 
range of Reynolds number between 1 to 300.  
 
2. Description of numerical method 
 For the computations, a 2D 9-bit incompressible 
lattice-Boltzmann model (D2Q9) with single time 
Bhatnagar-Gross-Krook (BGK) relaxation collision 

operator ( )1 ( )eqf fα ατ
Ω = − −  proposed by Bhatnagar, 

Gross and Krook [5] is used 
 ( , ) ( , )f x e t t t f x tα α α αδ δ+ + − = Ω   (1) 
where subscript α  indicates the velocity direction (α  
runs from 0 to 8), and ,  x tδ δ  are the lattice grid spacing 
and the time step, respectively. The particle speed, c , is 
define as xc t

δ
δ= . The dimensionless relaxation time τ  

is related to the kinematic viscosity as 
2(2 1) ( )

6
x
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τ δυ
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And ( , )f x tα  is the density distribution function 
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associated with the particle at node x  and time t  with 
discrete velocity eα , 
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And ( ) ( , )eqf x tα  is the corresponding local equilibrium 
distribution function, which is determined by 
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This local equilibrium distribution function has to be 
computed every time step for every node from the 
components of the local flow velocity ( , )u u v=

r , the 
fluid density ρ , a lattice geometry weighting factor αω ,  

0
4
9

ω = , 1
9αω =  for 1,2,3, 4α =  and 1

36αω =  for 

5,6,7,8α = . 
 
3. Detail of the test case  
 The system of interest is a horizontal channel with an 
obstacle in the form of a square positioned inside it. The 
problem domain and specified boundary condition are 
shown in Fig. 1. The size of the obstacle, d , the channel 
height, H , and  an inflow length l , 5

Ll = , define the 

solid blockage of the confined flow (blockage ratio 
d

Hβ = ).  

  

 
Figure 1.  Definition of the geometry and domain. 

 
The dimensionless equations for continuity and 
momentum may be expressed as 
 
   0u∇⋅ =

r ,   (3) 

  21( )
Re

u uu p u
t

∂
+∇⋅ = −∇ + ∇

∂

r
rr r   (4) 

where maxRe u d
υ

=  is the Reynolds number, maxu  is the 

maximum flow velocity of the parabolic inflow profile 
and υ  is the kinematic viscosity. 
 The boundary conditions in this investigation are 
as follow. At the inlet, a parabolic velocity inflow profile 
is applied. The outflow boundary condition for velocity is 

0u v
x x
∂ ∂

= =
∂ ∂

. No-slip boundary conditions are prescribed 

at the body surfaces. At the top and bottom surfaces of 
the channel, symmetry conditions simulating a 
frictionless wall are used ( 0)u v= = .  
 
4. Results and discussion 
 A Reynolds number range 1 Re 300≤ ≤  was 
investigated numerically on a 40x250 lattice. For all 
cases considered, the channel length and width were set 
to 250 and 40 respectively, and the obstacle size 10x10 in 
lattice unit was positioned at 5

Ll =  downstream the 

entrance of the channel. The blockage ratio was fixed at 
1

4β = . The following section starts with a description 

of the different flow patterns observed with increasing 
Re . Furthermore, the computations are analyzed flow 
parameter as Strouhal number. 
 
4.1 Flow pattern 
 Fig. 2. shows computational results by streamline 
plot at different Reynolds numbers (Re 1,  30,  60,  85,=   
100,  200) , each characterizing a totally different flow 
regime. At low Re 1≤ , the creeping steady flow past the 
square obstacle persists without separation (Fig. 2(a)). A 
steady recirculation region of two symmetrically placed 
vortices on each side of the wake, as shown in Fig. 2(b)-
2(c), whose length grows as Re  increases. The steady, 
elongated and closed near-wake becomes unstable when 
Re Recrit>  (Fig. 2(d)-2(f)). The value Re 85crit ≈  was 
observed in the present computations. When Re  is 
further increased as shown in Fig. 3. This phenomenon is 
well known as the von    von Ka rma n vortex street′ ′ , the 
wavelength of vortex shedding decreases with rising Re . 
Another important change in the flow structure is 
observed in the range Re 86 to 300= , where separation 
already starts at the leading edge of the square obstacle. 
As will be see below, this strongly influences the 
frequency of vortex shedding. 

 
  (a) Re 1=   (b) Re 30=  

 
  (c) Re 60=   (d) Re 85=  
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  (e) Re 100=   (f) Re 200=  
Figure 2.  Streamlines plot around the square obstacle for 

different numbers. 
 

 
            (a) Re 86=   (b) Re 100=  

 
            (c) Re 133=   (d) Re 200=  

 
            (e) Re 300=    
Figure 3.  Velocity profiles around the square obstacle for 

different numbers. 
 
4.2 Strouhal number 
 One important quantity taken into account in the 
present analysis is the strouhal number, St , computed 
from the obstacle size d , the measured frequency of the 
vortex shedding f  and the maximum velocity maxu  at 
the inflow 

  
max

fdSt
u

=     (5) 

 The characteristic frequency f  was determined by a 
spectral analysis of time series of the temporal evolution 
of u-component of the flow velocity at several points in 
the wake behind the obstacle. The simulations show an 
increase in the strouhal number with increasing Re . The 
Strouhal number has a maximum at about Re 160=  and 
decreases again for higher Re  while Guo  .et al  found a 
similar curve to that in the present investigation with a 
miximum at Re 160≈  as shown in Fig. 4. 
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Figure 4.  Comparison of computed Strouhal number St  

for different Reynolds number with data form the 
literature. (a) present work( 0.25β = ); (b) Guo  .et al  

( 0.125β = ). 
 
5. Conclusion 
 In order to generate reliable numerical results, a 
newly developed incompressible uniform lattice-BGK 
model was applied to investigate that 2D flow around a 
square obstacle inside a channel ( 0.25β = ) in the 
Reynolds number range 1 Re 300≤ ≤ . We have shown 
that our implementation of the lattice-BGK approach 
yields reliable results. For stead y flow (Re 85)< , the 
results was found for the length of recirculation region. 
The unsteady flow computations demonstrate the 
capability of the LBA to deal with instantaneous flows. 
Strouhal numbers were determined for the Reynolds 
number range (Re Re )crit> . Finally, this method provide 
a local maximum of St  at Re 160≈ .We will further use 
this method to simulate with increasing complexity of the 
obstacle structure and become highly complex structures.  
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