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Abstract 
 This research paper studies the buckling behavior of 
rectangular and skew thin composite plates with various 
boundary conditions using the Ritz method along with the 
proposed out-of-plane displacement functions. The 
boundary conditions considered in this study are 
combinations of simple support, clamped support and 
free edge. The out-of-plane displacement functions in 
form of trigonometric and hyperbolic functions are 
determined from the Kantorovich method. In addition to 
rectangular plates, the proposed method was applied to 
the skew plates by transforming the domain of skew plate 
in x-y coordinate to a square plate of size 1 unit by 1 unit 
in the -  coordinate. For rectangular plates with any 
combination of simple, clamped, and free support, the 
proposed displacement function yields very good results 
compared with the available solutions. However, for 
skew plates, the accurate results are obtained only for 
plates with clamped support. The solutions of plates with 
simple support or free support do not have a good 
convergence.  So, the proposed out-of-plane displacement 
functions can be used to solve the buckling problem of 
rectangular panels with all combinations of boundary 
conditions and skew panels with clamped support. Only 
an approximate solution is obtained if the proposed 
function is employed to skew plates with simple or free 
support. Buckling load and modes of specimens with 
various skew angles and levels of transverse loading are 
also presented.  

Keywords: Buckling, Composite, Rectangular Plate, 
Skew Plate, Ritz Method 

1. Introduction 
 Recently, composite materials are increasingly used 
in many mechanical, civil, and aerospace engineering 
applications due to their high specific stiffness (stiffness 
per unit density) and high specific strength (strength per 
unit density). Buckling of composite thin plates is in the 
interest of many researchers in the past decades. A lot of 
theoretical and experimental studies are available in the 
literatures [1-5]. Besides a simple plate configuration 
such as rectangular plates, several cases of irregular 
plates are also investigated in many studies. Heitzer and 
Feuch [6] employed the Rayleigh-Ritz method to analyze 

the buckling and postbuckling behavior of thin elliptical 
anisotropic plates. Triangular anisotropic plates were also 
studied by Jaunky et al. [7]. The skew or parallelogram 
plates which are in the scope of this study were also 
explored in several studies [8-10]. Most of the studies 
focused on plates with either simple support or clamped 
support on all four edges. In this study, the out-of-plane 
displacement functions for a variety of boundary 
conditions are employed along with the Ritz method to 
determine the buckling load and mode of composite 
laminated plates with a variety of boundary conditions. 
The buckling behavior of the skew plates are determined 
and compared to available solutions. The effects of skew 
angle and transverse tensile loading on the buckling load 
and mode are also investigated.   

2. Problem Statement 
 This study involves in buckling behavior of 
rectangular and skew laminated composite plates, as 
shown in Fig 1. The skew plate can be described by either 
orthogonal coordinate x-y or oblique coordinate - . The 
specimen is composed of a number of orthotropic plies 
with symmetric stacking sequence. The fiber angle  is 
measured with respected to the x-axis. The skew angle of 
the specimen  is also measured from the x-axis, as 
shown in the figure. Since a rectangular plate is a special 
case of skew plates, i.e. in case of  = 90 , all of the 
derivation in this paper is carried out in form of skew 
plate configuration. The length of the skewed edges in the 
 and  directions are a and b, respectively. The 

specimen is biaxially loaded by in-plane forces in the 
oblique coordinate system of Sx and Sy. It should be noted 
that the in-plane forces are in term of force per unit length 
of plate. In this study, buckling is caused by the in-plane 
force Sx, which is always a compressive load. The in-
plane load in the other direction, Sy, can be either tension 
or compression. It can be a specified or known load or be 
a ratio of the unknown buckling load Sx. The boundary 
conditions of the specimen can be any combinations of 
the simple support (S), clamped support (C), and free or 
no support (F).  

Besides the oblique loads, the orthogonal in-plane 
loads Nx, Ny, and Nxy are also shown in the figure. These 
loading will be used later in the Ritz method. The 
orthogonal loads are also in term of force per unit length. 
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With a simple derivation using equilibrium equations, the 
orthogonal in-plane loads are related to the oblique loads 
as follows; 

2cos / sinx x yN S S        (1) 

siny yN S           (2) 

cosxy yN S           (3) 
It should be noted that Sx = Nx, Sy = Ny, and Nxy = 0 for 
rectangular plates subjected to biaxial loading. 

 b 
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Figure 1. The skew plate with in-plane loading 

3. Total Potential Energy 
 To use the Ritz method to determine the buckling 
load, the total potential energy of the loaded plate must 
be determined. The total potential energy of the specimen 
is summation of the strain energy and the potential 
energy due to the applied loads. For symmetric laminated 
plate, the total potential energy for a thin composite plate 
in orthogonal coordinate is written as [3]; 
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where  Dij is the bending stiffness of the plate 
w is the out-of-plane displacement 

 The out-of-plane displacement function w(x,y) is 
easier determined for rectangular plate configuration than 
that of the skew configuration. So, the skew plate 
configuration is mapped into a unit square as shown in 
Fig 2. The relationship between the x-y coordinate and 
the - coordinate is written as; 

( cos )x a b        (5a) 

( sin )y b              (5b) 
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Figure 2. Mapping of the skew plate into a unit square 

That is the relationship of an integral of a function in the 
x-y coordinate is determined in the - coordinate as; 

( , ) ( ( , ), ( , ))
R R

f x y dxdy f x y Jd d            (6) 

where J is the Jacobian matrix defined as; 
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So, the total potential energy of the plates in the -
coordinate is simplify to; 
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4. The displacement function 
 The approximate displacement functions used in this 
study are written in form of the finite series as; 

1 1
( , ) ( ) ( )

M N

mn m n
m n

w A X Y         (9) 

where Xm( ) and Yn( ) are the basis functions satisfied 
the geometric boundary condition of the plate, and Amn
are the unknown coefficients to be determined. These 
basic functions are determined from the solutions of the 
buckling load of the specially orthotropic plates using the 
Kantorovich method [11]. Generally, the basis functions 
are the summation of the trigonometry and hyperbolic 
functions in form of; 

( ) sin cos
             sinh cosh

m m m m m

m m m

X A p B p
C q D qm

            (10) 

This form of function is used for both Xm( ) and Yn( )
basis functions. The subscript “m” refers to the mode of 
displacement. The first four modes of the basis function 
for clamped-free boundary conditions are shown in Fig 3. 
The boundary conditions are clamped support and free at 
the left end and right end, respectively.       

Figure 3. Displacement functions for clamped-free  
                boundary conditions 

5. Solution approach 
The Ritz method is used in the present study to 

determine the buckling load and mode of the skew plate. 
This method begins with obtaining the total potential 
energy in term of displacement functions by substituting 
the approximate displacement functions Eq.(9) into the 
total potential energy, Eq.(8). The displacement functions 
must be selected such that the geometric boundary 
conditions of the plate are satisfied. After performing 
several integrations, the total potential energy is written 
in term of the undetermined coefficients Amn and the 
buckling load Sx, given that the transverse load Sy is 
prescribed or varied with Sx. It is possible to describe to 
total potential energy in term of the orthogonal loading, 
but oblique loading is more practical. According to the 
principle of minimum total potential energy, the total 
potential energy is minimized with respect to the 
unknown coefficients Amn according to; 

0
mnA

                 (11) 

This procedure gives a system of M  N linear equations, 
which can be reduced to a matrix form of generalized 
eigenvalue problem as 

0xA C S B C            (12) 

where [A] and [B] are square matrices whose elements 
are determined from the plate properties. [C] is a column 
matrix of an eigenvector, Amn. Sx is the eigenvalue 
representing the buckling load of the problem. A number 
of eigenvalues will be obtained after the generalized 
eigenvalue problem equation, Eq. (12), is solved. The 
lowest eigenvalue is the buckling load which is of 
interest. The corresponding eigenvector of that lowest 
eigenvalue is substituted in the displacement function 
Eq.(9) to determine the buckling mode.  
 The convergence study was performed to ensure that 
the number of term used in the displacement function is 
enough to give a converged solution. A [±45]2S graphite-
epoxy rectangular plate is selected for convergence study. 
The mechanical ply properties of the graphite-epoxy 
composite are E11 = 131 GPa, E22 = 10.3 GPa, G12 = 6.9 
GPa, v12 = 0.22, and ply thickness = 0.127 mm. There are 
two rectangular plates with aspect ratio of 3, i.e. a = 0.9 
m and b = 0.3 m., and the boundary condition of SCCS 
and CCCC. For SCCS boundary condition, the first letter 
S and third letter C represent the boundary condition on 
the = 0 and = 1 edges, respectively. Similarly, the 
second and fourth letters represent the boundary 
condition on the = 0, and  = 1 edges, respectively. 
The buckling loads of both specimens are determined 
using different number of terms in the approximate 
displacement function, Eq.(9). The number of terms used 
in the convergence study are 1, 4, 9, ..144, i.e. M and N
are 1, 2, 3,..12. The buckling loads of both plates are 
plotted versus the number of terms, as shown in Fig 4. It 
is seen that the convergence of the buckling load is 
achieved very well with fairly low number of terms. 
Thus, in this study, the number of term used in the 
approximate displacement function is selected as 100, i.e. 
M = N = 10 are used in Eq.(9). 

A similar convergence study for skew plate was also 
performed for both isotropic and composite skew plates. 
It is found that the convergence of the buckling load is 
very slow for the specimens with simple support or free 
edge. For the case of CCCC plates, the buckling load is 
converged similar to that of the rectangular plate shown 
in Fig.4. The convergence study for SSSS skew 
aluminum plate with skew angle of 45  is shown in Fig. 
5. A total of 900 terms of the displacement functions, i.e. 
M=N=30, are used. It is seen that the convergence is very 
sluggish, even with such a high number of term in the 
displacement function. So, the proposed functions are not 
recommended for skew plates with simple support or free 
boundary conditions.      
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Figure 4. Convergence of the buckling load of [±45]2S
                rectangular plates  
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Figure 5. Convergence of the buckling load of aluminum  
                skew plates with skew angle,  = 45

6. Numerical verification  
 In this section, the buckling loads determined from 
the proposed displacement functions are verified with the 
available solutions. Table 1 presents the buckling load of 
a square composite plate (  = 90 ) compared with 
solutions from other two studies. The boundary 
conditions of the specimens in this case are CSCS. It can 
be seen that the differences between buckling loads of the 
present and past studies are less than one percent. 
Similarly, buckling loads of [0/90]2s rectangular plates 
with various combination of boundary conditions are 
verified with the solution from Kantorovich method [11] 
in Table 2. The nondimensional buckling load is defined 
by   

2

2
22

cr
x

cr
N bK

D
              (13) 

The boundary conditions are CCCF, SCSF, and SCSC 
with plate aspect ratios of 1,2, and 3. The buckling loads 
from this study and the past study match very well with 
each other. 
 The solution for skew plate is also compared with the 
solution from Wang [8] in Table 3. In this comparison, 

the buckling is initiated by the uniaxial loading with 
compressive force Sy. To compare with the solutions of 
the previous study, the obtained buckling loads are 
transformed to the buckling stress parameter which is 
defined as; 

2

2 3
22

y
cru

S b
K

E h
               (14) 

The material properties of the ply are E11/E22 = 10.0, 
G12/E22 =0.5, v12 = 0.333, h/b = 0.001. The fiber angles of 
the specimens are unidirectional of 45°, 60° and 90° with 
the skew angle of 45° and 60°. The specimens are 
supported by CCCC boundary conditions. Again, the 
solutions of the present study are compared very well 
with those of the previous study. 

Table 1. Buckling loads of CSCS square plates compared 
with the previous studies.  

Buckling load ( 103 lbs) Stacking
Sequence

Plate
Thickness

(in) Ref. [11] Ref. [12] Present 
study 

0.115 11.8328 11.7625 11.8312 

0.102 8.2565 8.2074 8.2553 
[0/90]5S

0.091 5.8630 5.8282 5.8622 

0.110 N/A 9.3453 9.3909 
[30]20

0.106 N/A 8.3625 8.4149 

0.102 N/A 8.3746 8.4230 
[±45]2S

0.110 N/A 10.5036 10.5651 
Note. E11 = 215 GPa (31.18 Msi), E22 = 23.6 GPa (3.42 
Msi), G12 = 5.2 GPa (0.754 Msi), v12 = 0.28, a = b = 25.4 
cm (10 in.) 

Table 2. Nondimensional buckling load factor of [0/90]2s
   rectangular plates. 

Aspect ratio, (a/b)B.C. Method 
1.0 2.0 3.0 

Ref. [11] 7.8494 2.4895 1.8747 CCCF Present 7.8492 2.4886 1.8737 
Ref.[11] 2.2294 1.2079 1.3489 SCSF Present 2.2294 1.2089 1.3491 
Ref. [11] 7.8342 7.3323 7.0500 SCSC Present 7.8342 7.3322 7.0500 

Note. E11 = 10E22, G12 = 0.5E22, v12 = 0.25 

 In addition to the buckling load, the buckling mode is 
also determined from the eigenvector corresponding to 
the lowest eigenvalue. From the eigenvector, the out of 
plane displacement configuration of the buckled plate in 
the - coordinate is determined from Eq.(9). The out-of-
plane displacement w( , ) is transformed back to that of 
the x-y coordinate, and then plotted in form of a contour, 
as shown in Table 4. Each line on the contour represents 
a line of constant out-of-plane displacement. It is noticed 
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that the buckling mode configuration depends on both 
fiber angle and skew angle. 
   
Table 3. Buckling stress parameter of skew plates  
            compared with the previous study. 

Skew angle 

45° 60°Fiber
angle 

Ref. [8] Present Ref. [8] Present 
study 

45° 4.3871 4.3875 3.0507 3.0509 

60° 5.4533 5.4544 4.0419 4.0420 

90° 4.1062 3.9290 3.9910 3.9927 

 Table 4. Buckling mode skew composite plates 
Skew angle Fiber

angle 45° 60°

45°

60°

90°

As shown in the convergence study that the 
convergence in case of simple support is very slow, the 
buckling loads of an isotropic skew plate with a/b = 1 are 
compared with other studies, as shown in Table 5. The 
numbers of terms used for the case of SSSS boundary 
condition are 900 terms. The specimens considered is 
uniaxially loaded by Sx and the buckling load is presented 
in term of nondimensional buckling load, Eq.(13). The 
buckling loads of specimens with CCCC boundary 
conditions are also presented for comparison. It should be 
noted that, for CCCC boundary condition, only M=N=10
is used. For case of SSSS boundary condition, the 
variation of buckling loads from each researcher is fairly 
high, ranging from 8.47 to 12.30 for skew angle of 45 .
Kennedy’s solutions are exact solutions since the 
problem is solved by satisfying the natural boundary 
conditions. Other solutions used the functions that are not 
exactly satisfied the natural solutions. In the present 
study, the double sine series are used as an approximate 
displacement functions for SSSS boundary conditions, 
i.e. coefficients BBm, Cm, and Dm are all zero in the 
displacement functions, Eq.(10). With the double sine 
series, only the kinematic boundary condition w = 0 is 
satisfied. The force boundary condition Mn = 0 (n is a 
direction normal to the plate boundary) is not satisfied 
since the proposed function yield the zero moment only 
in the oblique directions or in direction of and . In 
case of CCCC boundary condition, the proposed 

functions yields zero displacement on the boundary and 
zero slope in the normal direction, so the obtained 
buckling load are more accurate and match very well with 
other studies.  
 Therefore, the proposed approximate displacement 
functions are capable of predict the buckling load of 
rectangular composite plate with various boundary 
conditions. For skew plates, the proposed function yields 
an accurate result for only clamped support. Only an 
approximate solution are obtained for cases of simple or 
free supports because the force boundary conditions are 
not satisfied 

Table 5. Nondimensional buckling load (Kcr) for isotropic  
   skew plates (a/b = 1) 

Skew angle ( )
B.C. Solutions 90 75 60 45

Durvasula[13] 4.00 4.48 6.41 12.30
Kennedy [14] 4.00 4.33 5.53 8.47 
Wang [15] 4.00 4.44 6.19 10.60
Reddy [16] 4.00 4.32 5.55 8.64 

SSSS

Present 4.00 4.41 6.02 10.70
Ashton [17] - 11.01 13.79 20.67
Wang [15] 10.08 10.89 13.75 20.69
Reddy [16] 10.08 10.76 13.64 20.62CCCC
Present 10.07 10.83 13.54 20.13

7. Additional Solution 
 The buckling loads and modes of [45]8 graphite-
epoxy rectangular plates with CCCF, SCSF, and SSCC 
boundary conditions are presented in Table 6. The 
specimen aspect ratio is 3; that is the dimensions of the 
specimen are a = 0.9 m. and b = 0.3 m. The specimens 
are loaded with either uniaxial loading, i.e. load ratio = 0, 
or biaxially loading. The buckling is initiated by the 
compression loading in the x direction, Sx, with tensile 
load Sy in the other direction. It can be seen that the 
buckling loads are increased with the applied transverse 
tensile loading. Similarly, the buckling modes for 
uniaxial and biaxial loading are different. If the buckling 
mode is indicated by the number of half-sine curves of 
the out-of plane displacement. For example, the bucking 
mode of SSCC plate is increased from mode 4 to mode 5 
if the applied transverse tension is half the compressive 
load. Similar behavior is observed for CCCF and SCSF 
specimens. If the buckling mode is plotted as a contour 
plot, the contour will be inclined with respected to the 
plate boundary because of the inclined fiber angle. 
 For skew plates, the buckling loads of laminated 
plates with various skew angles are studied. Buckling 
loads and buckling modes of graphite-epoxy laminate 
with stacking sequence of [0/90]2S are shown in Table 7. 
The boundary condition of the specimens is CCCC with 
skew angle varied from 75° to 30°. In order to compare 
the buckling load between each specimen, the area of the 
plate is kept constant, i.e. the width a and height sinb
are unchanged for each specimen. In this study, both the 
width and height of the specimens are 0.3 m. It is found 
that the buckling load of the specimen with higher skew
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    Table 6. Buckling loads and modes of [45]8 rectangular plates 

angle is higher than that of the lower skew angle. This 
implies that the rectangular panel has higher load 
capacity than the skew plate of the same size. For 
specimens with skew angles of 60° and 75°, the buckling 
mode is said to be mode 1 since the number of half-sine 
wave in the direction of the applied load is 1. For 
specimen with skew angle of 45°, the buckling mode is a 
little different from other two specimens. There is a small 
out-of-plane displacement in the corner of the plate. The 
buckling mode of 30°-skew-angle plate is said to be 
mode 3 since there are two small contours on the buckled 
configuration. 
  Another study involves biaxial loading of the skew 
composite plates where both Sx and Sy loads are applied 
simultaneously. The buckling is initiated by the 
compressive loading Sx while the tensile load Sy is also 
presented. In this study, the transverse tensile load Sy is
assumed to be a ratio of the compressive load Sx. The 
buckling loads of [45]8 composite plates with boundary 
conditions of CCCC are presented in Table 8. The 
specimens are loaded biaxially with the load ratio of 0, -
1, and -2, respectively. Similar to the rectangular plates, it 
can be seen that the buckling load is higher with the 
applied transverse tension. That is the specimen is 
reinforced by the transverse tensile loading because the 
transverse load trends to keep the panel flat. In addition 
to the buckling loads, buckling modes of the specimens 
with different load ratio are compared in the third column 
of the table. The buckling mode is mode 2 for uniaxial 
loading specimen. The buckling mode changes from 
mode 2 to mode 3 if the load ratio is increased to load 
ratio of -2. The buckling mode can be higher than mode 

2, i.e. mode 3 or mode 4, if the transverse tensile load is 
increased. 

Table 7. Buckling loads of CCCC [0/90]2S laminates with  
              various skew angle 

Skew 
angle 

Buckling 
Load, Sx
(kN/m) 

Buckling mode 

75° 5.4998 

60° 4.9076 

45° 3.9328 

30° 2.6068 

Load 
Ratio CCCF SCSF SSCC

0

= 0.5138 kN/mcr
xN =  0.3671 kN/mcr

xN = 1.8222 kN/mcr
xN

-0.5 

= 0.7760 kN/mcr
xN = 0.5977 kN/mcr

xN = 2.6581 kN/mcr
xN

-1

= 1.0098 kN/mcr
xN = 0.8339 kN/mcr

xN = 3.5667  kN/mcr
xN

The 20th Conference of Mechanical Engineering Network of Thailand 

Suranaree University of Technology 

ME NETT 20th

AMM010

51 AMM010

18-20 October 2006 , Mandarin Golden Valley Hotel & Resort Khao Yai , Nakhon Ratchasima

School of Mechanical  Engineering , Suranaree University of Technology



   Table 8. Buckling load and mode of [45]8 biaxially- 
      loaded panels 

Load 
Ratio 

Buckling  
Load, Sx
(kN/m) 

Buckling mode 

0 1.791 

-1 2.376 

-2 2.924 

8. Conclusion 
 In this study, the bucking behavior of rectangular and 
skew laminate plates with any combinations of simple, 
clamped, and free boundary conditions is investigated. 
Both bucking load and buckling mode are examined. The 
Ritz method along with the proposed approximate out-of-
plane displacement functions is adopted. Displacement 
functions are determined from the buckling problem of a 
specially orthotropic plate solved by the Kantorovich 
method. The buckling loads obtained from the present 
method are verified with the previous studies. A very 
good agreement between the present solutions and the 
available solutions is obtained for rectangular plates with 
any combination of the boundary conditions and the skew 
plate with CCCC boundary condition. The proposed 
functions yield only approximate solutions for skew 
panel with simple support or free boundary condition 
because the proposed function does not yield the zero 
moment in the normal direction of the plate’s boundary. 
Addition studies were performed to study the effect of 
skew angle and the transverse loading to the buckling 
behaviors. It is found that the buckling load is decreased 
with the decrease of the skew angle. The buckling mode 
may change a little bit with the skew angle. For biaxial 
loading, the buckling load is increase with the magnitude 
of the transverse tensile loading. The buckling mode may 
completely change, i.e. mode 2 to mode 3, if the 
transverse load is high enough. 
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