
 

 

การประชุมวิชาการเครือขายวิศวกรรมเครื่องกลแหงประเทศไทยครั้งที่ 21 
17-19 ตุลาคม 2550 จังหวัดชลบุรี 

 
 

Development and Control of 6-DOF Fully Autonomous Flying Robot 
 
 

Sukon Puntunan1, and Manukid Parnichkun2 
 

1 Mechanical Engineering Department, Engineering Division, Royal Thai Air Force Academy, 
Bangkok, 10220, Thailand 

 Tel: 0-2534-3674, E-mail: sukon@aerotronix.net 
2 School of Engineering and Technology, Asian Institute of Technology,  

Pathumthani 12120, Thailand 
 Tel: 0-2524-5229, E-mail: manukid@ait.ac.th 

 
 
Abstract 

Control of 6-DOF fully autonomous helicopter-type 
flying robot is very difficult because of the non-linear 
unstable nature of the flying robot. Many researchers in 
this field verified their control algorithms only on 
simulation. There are very few successful experiments on 
fully control of the flying robot. In order to make the 
robot fly autonomously, attitude and position controls are 
required. In this paper, neuro-fuzzy control (NFC) is 
applied to control roll, pitch and yaw of the flying robot, 
while hybrid adaptive neuro-fuzzy model reference 
control (Hybrid-ANFMRC) is proposed to control the 
robot position. The attitude controllers are trained offline 
to reduce roll, pitch and yaw errors. The position control 
learns online to track a velocity reference model to get 
short response time, small oscillation, and no steady state 
error. Parameter robustness of the proposed control 
algorithm is addressed by testing in the experiments 
under various ranges of control gains. The experimental 
results confirm the feasible performance of the proposed 
control algorithm for the flying robot. 

. 
Keywords: flying robot, adaptive control, hybrid control, 
model reference control. 
 
1. Introduction 
    It is expected that flying robots will be used in many 
applications in the future, particularly in various 
hazardous areas. For examples, the robot can hover and 
transmit top view video image of hostage situations, 
enemy locations, or areas contaminated by toxic 
chemicals or biological agents for appropriate further 
actions. They can be used in geological survey and map 
generation purposes with less expense compared with 
using real airplanes or helicopters. In order to make use 
of flying robots in these various applications effectively, 
the robots are to have the ability to fly automatically. A 
flying robot is modified from X-Cell 60 radio-controlled 
helicopter. It is developed to support autonomous flight 
control covering wide-mode missions of operation from 
taking off, hovering, flying in forward, backward, 
leftward, rightward, upward, and downward directions to 

specified locations, until landing. The flying robot has six 
degrees of freedom in its motion. The problem of this 
kind of the flying robot is its inherent unstability. The 
robot dynamics is nonlinear and varies with environment. 
The system is always disturbed by noise and disturbance; 
wind turbulence, ground effect, for instances. As the 
result, control of the flying robot is very difficult and 
very challenging at the same time.  
    Currently, there are some researches focusing on 
control of autonomous flying robots by different control 
techniques [1]. However, there are very few successful 
experiments on fully control of this kind of robot.  The 
researches are separated into 2 directions. The first 
direction applies model-based approach. The other 
direction is based on model-free approach. Model-based 
approach can not be implemented efficiently in real 
world, because of the difficulty in obtaining an acceptable 
and accurate dynamics model of the flying robot. As the 
system increases its complexity, complete and accurate 
identification of the robot mathematical model becomes 
difficult. Consequently, the applicable models are just 
only the approximations. To overcome the problem, some 
researches apply model-free technique. Neural network 
and fuzzy logic are widely used. Wyeth, et.al, applied 
flight data to train a neural network controller offline [2]. 
They obtained direct mapping of sensor inputs to actuator 
outputs. The control used a “cause” and “effect” 
approach. It was found from the experimental results that 
they failed to control the robot by this approach. 
Montgomery, et.al developed a “teaching by showing” 
method to train a fuzzy-neural controller [3]. The 
controller was developed and tuned by using training data 
gathered while the operator manually controlled the 
flying robot. The method was successfully applied in 
simulation but failed to control the flying robot in real 
operation. Sugeno could successfully control the flying 
robot by applying a fuzzy logic control [4]. He used the 
knowledge from experienced pilot to design his fuzzy 
logic controller. He also compared the performance of 
fuzzy logic control with conventional linear control under 
a windy environment. Fuzzy controller showed its 
robustness against wind turbulent better than in linear 



 

 

controller. However, the design process took time and 
required experimental skill from the expert pilot.  
    Drawback of neural network is the difficulty in re-
tuning the network after the training process was once 
accomplished. Likewise drawback of fuzzy logic control 
is the requirement of knowledge about the plant under 
control. Parameters of fuzzy logic controller are 
determined manually. Neuro-fuzzy control takes the 
advantages from fuzzy logic control and neural network. 
Learning ability of neural network and tuning ability of 
fuzzy logic control are integrated in the neuro-fuzzy 
control. 
    In this paper, a model free approach, neuro-fuzzy 
control, is applied to control roll, pitch and yaw of the 
flying robot. The neuro-fuzzy controllers are trained 
offline from the flight data. Hybrid adaptive neuro-fuzzy 
model reference control (Hybrid-ANFMRC) is proposed 
to control position of the flying robot. The position 
control combines neuro-fuzzy with proportional control. 
The proportional control acts as the basis control, while 
the adaptive neuro-fuzzy model reference control learns 
to track a velocity reference model. The reference model 
is defined as the function of position error. It can be 
linear or non linear function of the position error. The 
position control learns from the flight data without using 
any expert knowledge. Experiments are undertaken to 
evaluate performances of the proposed control algorithm. 
Robustness of the position controls is addressed by 
testing in experiments under various ranges of the 
proportional gains. 
 
2. Six-DOF Control of Flying Robot 
2.1 Neuro-fuzzy control 

Neuro-fuzzy controller is applied to control roll, pitch 
and yaw of the flying robot. The neuro-fuzzy control is a 
class of hybrid controls that fuses fuzzy logic with neural 
network. It combines the advantages of neural network in 
learning ability, optimization abilities and connectionist 
structure with the advantages of fuzzy logic control in 
human-like structure, ease of incorporating expert 
knowledge [5]. The structure of the neuro-fuzzy attitude 
control is shown in Figure 1. 
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Figure 1. Neuro-fuzzy attitude control 
 

    From Figure 1, there are two inputs and one output of 
the neuro-fuzzy controller. The first input is attitude 
error, )(ke . The second input is change of attitude error, 

)(keΔ . The output of the neuro-fuzzy controller is 
change of actuator command, )(kδΔ . The attitude error, 

)(ke  and the change of attitude error, )(keΔ , are 
determined as followings. 

)()()( kkke desired Φ−Φ=   (1) 
)1()()( −−=Δ kekeke   (2)  

where  )(kdesiredΦ  is the desired attitude, and )(kΦ  is 
the actual attitude of the flying robot.  
    The input parameters of the neuro-fuzzy controller 
have to be normalized to fit with the hardware 
constraints. The normalized attitude error, )(ken  and the 
normalized change of attitude error, )(kenΔ  are 
calculated as followings.   

))(()( 1 kegken =    (3) 
))(()( 2 kegken Δ=Δ   (4) 

where )(1 •g  and )(2 •g  are the normalization functions 
of the attitude error, )(ke  and the change of attitude 
error, )(keΔ , respectively.  
    The normalization functions are defined as followings. 
   ))((1 keg )(1 kegk nege=    if 0)( ≤ke  

                  )(1 kegk pose=   if 0)( >ke  

             ))((2 keg Δ )(2 kegk nege Δ= Δ             if 0)( ≤Δ ke

    )(2 kegk pose Δ= Δ             if 0)( >Δ ke
               (5) 
where ek and ekΔ are attitude error and change of attitude 
error gains, respectively.  The constant values; negg1 , 

posg1 , negg2  and posg2 , are the normalization factors for 
each input parameters. 
    The output of the neuro-fuzzy controller is the result of 
mapping from the normalized attitude error, )(ken and 
the normalized change of attitude error, )(kenΔ  to the 
output, )(kγ . The change of actuator command, )(kδΔ , 
is obtained by multiplying the output, )(kγ  with the 
output gain δk . 

)()( kkk γδ δ=Δ    (6) 
    The actuator command, )(kδ , is the summation of the 
change of actuator command, )(kδΔ  with the control 
trim, trimδ .  

)()( kk trim δδδ Δ+=   (7) 
    Performance of the neuro-fuzzy control is affected by 
changing the attitude error gain, ek , the change of 
attitude error gain, ekΔ  and the output gain δk . 
    In this paper, the neuro-fuzzy controller is trained to 
reduce the attitude errors. The flight data is used as the 
training set. The offline learning of the neuro-fuzzy 
controller applies back propagation algorithm. Figure 2 
shows symmetrical triangle membership functions of the 
neuro-fuzzy controller with fuzzy singleton rule.   
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Figure 2. Symmetrical triangle membership function 
 

    The symmetrical triangle membership function is 
expressed by the following equation. 
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where ix  is the input value, j
ia  is the center of triangle 

and j
ib  is the width of triangle. The fuzzy rules, also 

called fuzzy singleton, are in the following form [5]. 
Rule j: If ix  is jA1  and 2x  is jA2  and … and nx  is 

j
nA then γ  is jw . 

where j
iA is a linguistic term with the membership 

function, )( i
i
A xj

i
μ , jw  is a real number of weight in the 

neural network part. By the singleton rule, control output, 
)(kγ  from the neuro-fuzzy controller is calculated by the 

following equation. 

)(

)()(
)(

1

1

k

kwk
k m

j
j

m

j
jj

∑

∑

=

==
μ

μ
γ   (9) 

where  
)()( 1

2
1 iAiAj xx
j

μμμ = … )(1 iA x
n

μ   (10) 

    The weights of the neuro-fuzzy controller are modified 
by steepest gradient method to minimize a cost function. 
The cost function is defined as half of the square of the 
difference between the command attitude and the actual 
attitude.  

2)(
2
1

Φ−Φ= desiredE   (11) 

    The weights of the neuro-fuzzy controller are modified 
by steepest gradient method as following. 
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where 0≥η  is the learning rate. 
    By applying chain rule, the adjusted weights can be 
determined from 
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2.2 Hybrid adaptive neuro-fuzzy model reference 
control 
    Hybrid-ANFMRC is proposed to control position of 
the flying robot. The control is a hybrid of a proportional 
control with an adaptive neuro-fuzzy model reference 
control. In the proposed control algorithm, the 
proportional controller generates the output proportional 
to position error. The adaptive neuro-fuzzy model 
reference controller generates the output by learning to 
track a velocity reference model. Structure of the Hybrid-
ANFMRC is shown in Figure 3. 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 3. Structure of Hybrid-ANFMRC 

 
    From the figure, the Hybrid-ANFMRC consists of a 
proportional controller and a neuro-fuzzy controller. The 
position error )(kep  is the difference between the desired 

position, )(kPdesired  and the actual robot position, 
)(kProbot .  

)()()( kPkPke robotdesiredp −=  (14) 
    The proportional controller is used to generate the 
control output, )(ku prop  proportional to the position 

error, )(kep . The output of the proportional controller is 
calculated as following. 

))1()(()1()( −−+−= kekekkuku ppPpropprop

 (15) 
where Pk  is the proportional gain.  
    Main function of the proportional controller is to 
reduce the overall error. However, the control output of 
the proportional controller becomes smaller when the 
error approaches zero. As the result, steady-state error 
always exists by a sole proportional controller. The 
adaptive neuro-fuzzy model reference controller is used 
to reduce steady state error remaining from the 
proportional controller, while still attenuates the 
oscillation. The output of the proportional controller, 

)(ku prop , is summed with the output of the adaptive 

neuro-fuzzy model reference controller, )(kuneuro , 
becoming the hybrid control output, )(kuhybrid . 

)()()( kukuku neuroprophybrid +=  (16) 
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    The hybrid output, )(kuhybrid , is then summed with the 

control trim, trimu , to generate the control output, )(ku .  

trimhybrid ukuku += )()(   (17) 
    The input of the adaptive neuro-fuzzy model reference 
controller is velocity of the robot. The robot velocity is 
then normalized to the normalized velocity, )(, kP robotn

& . 
The normalized velocity is obtained by multiplying the 
velocity, )(kProbot

&  with a scaling factor, vg . 

)()(, kPgkP robotvrobotn
&& =   (18) 

    The output of the adaptive neuro-fuzzy model 
reference controller is the mapping result from the 
velocity, )(kProbot

&  to the adaptive output, )(kuneuro , 
which is calculated by the weight average method. With 
the normalized inputs, )(, kP robotn

& , the output, )(kuneuro , 
is determined from equation (19). 

)(

)()(
)(

1

1

k

kwk
ku m

j
j

m

j
jj

neuro

∑

∑

=

==
μ

μ
 (19) 

where  
))(()( ,1 kPAk robotn

i
j

&=μ   (20) 

and  ))((1 kPA robot
i &  is a triangle membership function.  

    The adaptive neuro-fuzzy model reference controller 
learns to track the desired velocity reference model, 

)(kr , which is defined as the function of the position 
error as following. 

))(()( kPfkr robot=   (21) 
where )(•f  is a linear or nonlinear function. 
    Weights of the adaptive neuro-fuzzy model reference 
controller are modified with steepest gradient method to 
minimize a cost function. The cost function is defined as 
half of the square of the difference between the velocity 
reference model and the actual velocity.  

2))()((
2
1 kPkrE robot

&−=   (22) 

The weights are modified as following. 
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where 0≥η  is the learning rate. 
By applying chain rule, the adjusted weights can 

be determined from 
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3. Experimental Results 
3.1 Experiment of neuro-fuzzy attitude control 
    Only yaw control is considered here. The principle of 
row and pitch control is similar to yaw control and 
omitted in the explanation. The training data are obtained 
by applying series of input signal to the uncontrolled yaw 

axis, while maintaining the flying robot stable in the other 
axis. The signal causes the robot to oscillate about z-axis. 

 
 
 

Figure 4. Training data for neuro-fuzzy yaw control 
 

    Figure 4 shows the training data and the offline 
training result of the neuro-fuzzy yaw control. In the 
control, there are 7 membership functions for each input. 
Each linguistic value is expressed by its mnemonic; for 
example, NB for “negative big”, NM for “negative 
medium”, NS  for “negative small”, ZO  for “zero”, and 
likewise for the positive ( P ) mnemonic. 
    In the experiment, the learning rate is selected at 0.02. 
The design parameters are shown in Table 1. 
 
Table 1. Neuro-fuzzy yaw control parameters (* indicates 
the values after fine tuning) 

1g  2g  k  

negg1  posg1  negg2  posg2  ek  ekΔ  δk  

1.0 1.0 1.0  
0.0529 

 
0.0684 

 
0.7619 

 
0.4706 *1.0 *2.1 *1.39 

 
    Offline training helps to initialize the valid control 
parameters that can stabilize the yaw control of the flying 
robot. Without offline training, parameters of the neuro-
fuzzy controller might fall in the unstable region. After 
offline training, manual coarse and automatic fine tunings 
are also required practically. Automatic online fine tuning 
is applied to reduce steady state error. Without manual 
coarse tuning, the parameters obtained by sole fine tuning 
might not be converged. The experimental result is 
shown in Figure 5. At the beginning, the gains of the 
neuro-fuzzy controller are manually tuned until an 
acceptable control performance is achieved. Then the 
neuro-fuzzy controller is online fine-tuned to reduce the 
steady state error. 
    The experimental result of yaw control under step 
inputs is shown in Figure 6. From the figure, the yaw 
response could follow the step inputs with small 
oscillation magnitude and steady state error. 
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Figure 5. Tuning result of neuro-fuzzy yaw control 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Step input response of neuro-fuzzy yaw control 
 

3.2 Experiment of position control with Hybrid-
ANFMRC 
    The outputs of the lateral, longitudinal position and 
altitude control are the desired roll, the desired pitch and 
the change of collective commands, respectively. The roll 
and pitch control are designed similar to the yaw control 
described in section 2.1. In the experiment, the 
proportional gains of the lateral and longitudinal position 
control are both 8.0. The proportional gain of the altitude 
control is 30.0. The lateral and longitudinal position 
commands are both 0 meter. The altitude command is 
13.0 meter. The learning rates of the lateral, longitudinal 
position and altitude control are all 0.4. The velocity 
reference model is defined as a linear function of the 
position error. The robot velocity is normalized within 
the range between –1.2 and 1.2. There are 7 elements of 
the weight for each control axis, which are initialized to 
zero at the beginning. 
    In Figures 7 and 8, only the proportional control is 
applied at the beginning. The learning process of the 
Hybrid-ANFMRC is then activated. During learning, the 
controller adapts the control parameters and learns to 
control position of the robot. Finally, the robot can track 
the desired position with no steady state error. 
    Figure 9 shows the result of altitude control. The 
control is switched between manual pilot control and 
Hybrid-ANFMRC computer control. Every time the pilot 
takes control the robot, the learning process is stopped. 
The control performance is better with more learning 
which can be seen from the figure that the oscillation 
magnitude is small during every learning. The control 
learns to control the altitude of the robot effectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Lateral position control by Hybrid-ANFMRC,  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 8. Longitudinal position control by Hybrid-
ANFMRC 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Altitude control by Hybrid-ANFMRC 
 

    To evaluate robust performance of the proposed 
control algorithm, the longitudinal position control is 
studied. The proportional gain of the longitudinal position 
control is varied. Figures 10-12 show responses of 
Hybrid-ANFMRC at the proportional gains of 2.0, 4.0 
and 8.0 respectively.  
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Figure 10. Response of Hybrid-ANFMRC with Pk  = 2.0 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 11. Response of Hybrid-ANFMRC with Pk  = 4.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 12. Response of Hybrid-ANFMRC with Pk  = 8.0 
 
5. Conclusion 
 In this paper, neuro-fuzzy control and the 
Hybrid-ANFMRC were proposed to control fully 
autonomous flying robot. The neuro-fuzzy controller was 
applied to control the roll, pitch and yaw of the flying 
robot. The controller was trained using the flight data and 
fine tuned to achieve the desired response. The Hybrid-
ANFMRC was proposed to control the lateral, 
longitudinal positions, and altitude of the flying robot. 
The control performance of the Hybrid-ANFMRC was 

evaluated from many experiments. The desired 
performance could be achieved by the proposed control 
algorithm even with the variation of control gain. The 
experiments showed that the proposed control algorithms 
were able to successfully control the flying robot. 
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