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Abstract 

Stability is one of the important failure modes of 
thin-walled structures subjected to compressive loading. 
Besides theoretical and numerical studies, buckling of 
plate problem has been experimentally investigated. In 
this paper, the vibration correlation technique (VCT) is 
introduced as an alternative method to determine the 
buckling load. The relationship between applied in-plane 
load and the natural frequency of plates are derived from 
the differential governing equations of both problems. In 
this technique, square of the natural frequency of flexural 
vibration of plate is plotted against the applied in-plane 
load. It is shown that when the applied load approaches 
the buckling load of plate, the natural frequency of plate 
approaches zero. The square of the natural frequency is 
also linearly related to the applied load. Thus, the 
buckling load can be determined by extrapolating the data 
to the applied load at which natural frequency approaches 
zero. The vibration correlation technique is numerically 
verified by plotting square of natural frequency of loaded 
plate with applied in-plane load. The obtained buckling 
load from the plot is successfully compared with the 
buckling load determined by direct numerical method. 
The Ritz method along with the beam functions is 
employed to determine the natural frequency and the 
buckling load of rectangular isotropic plate with 
combined boundary conditions. Besides buckling load, 
buckling mode can also be determined from vibration 
mode. The specimens used in this study are rectangular 
isotropic plates with simple-clamped-simple-clamped (S-
C-S-C) and simple-clamped-simple-free (S-C-S-F) 
boundary conditions.   
Keywords: Buckling, Vibration, Plate, Vibration 
correlation technique, Ritz method. 
 
1. Introduction 
 Stability is one of the important factors that should be 
considered in design of thin-walled structures subjected 
to compressive loading. Besides buckling of columns and 
shells, buckling of plates is a problem that has been in the 
interest of many structural engineers and researchers. 
Studies in this field include theoretical, numerical, and 
experimental investigations. Identification of the buckling 
point of isotropic rectangular plates with simple support 
on all edges has been studied by Supasak [1]. In that 

study, buckling loads of aluminum plates were identified 
from the experiment using four different methods; i.e. 1) 
a plot of in-plane loads vs. out-of-plane displacement, 2) 
a plot of in-plane loads vs. end-shortening, 3) a plot of in-
plane loads vs. difference of surface strains, and 4) a plot 
of the ratio of out-of-plane displacement to in-plane load 
vs. out-of-plane displacement. Experimental buckling 
loads determined from the first three methods have a 
fairly high percent error compared with the theoretical 
solutions. The last identification method gave the value 
of buckling loads with percent error as high as 69% 
compared with the theoretical solutions. The author also 
indicated the difficulty in identifying the buckling load 
from the plots of measured data. Chai et. al. [2] compared 
experimental buckling load of composite plates with the 
theoretical solutions. The discrepancy between the 
experimental and theoretical solutions was ranged 
between -7 % and +11 %. Tuttle et. al. [3] determined 
buckling loads from plots of applied in-plane load vs. 
out-of-plane displacement of composite panels and 
compared the experiment results to numerical predictions 
obtained from Galerkin method. Although the average 
percent error between the measured and predicted 
buckling loads is very low, the standard deviation of the 
percent error is as high as 15%. This high deviation 
reflects the accuracy of the measurements. Thus, it is 
difficult to experimentally determine the buckling load of 
plates using static test method, since even the smallest 
amount of imperfection of the specimen, loading 
apparatus, or boundary conditions can have an apparent 
impact on the buckling behavior. Moreover, in the static 
approach, there is a need to draw two lines in the pre-
buckling and post-buckling regions which may be a cause 
of error.   
 There is a need for an alternative approach to 
experimentally identify the buckling load of plate. In this 
paper, the vibration correlation technique (VCT) which is 
a dynamic approach is explored. Lurie and Monica [4] 
shown that square of the frequency of the lateral vibration 
of thin plate with simple supports on all edges is linearly 
related to the end load. They also conducted some 
experiments on elastically restrained columns, rigid-joint 
trusses, and thin flat plates. The authors reported that 
VCT was successfully employed to predict buckling load 
of only columns and truss. For flat plates, because of the 



 

 

initial curvature, the buckling load cannot be predicted by 
the proposed method. However, Chailleux et. al. [5] 
showed later that with a careful experiment setting, VCT 
can be used to determine the buckling load with satisfied 
accuracy.  
 In this research, the relationship between buckling 
and vibration behavior of thin plate is investigated. The 
relationship between applied in-plane load and the natural 
frequency of plates are derived from the differential 
governing equations of both problems. The derived 
relationship is verified using a numerical method. This 
relationship also implies that buckling load of plate can 
be obtained from the vibration data of the loaded plates. 
So, an alternative method for buckling load identification 
using dynamic approach is proposed.    
 
2.  Relationship between vibration and buckling  
     behaviors  
 In this study, the vibration and buckling behaviors of 
a rectangular isotropic plate as shown in Fig.1 are 
investigated. The buckling load of plate represented 
by xN  is the in-plane load Nx at which buckling occurs. 
For vibration behavior, the natural frequencies of plate 
can be determined for a specimen with a given tensile or 
compressive load Nx.  

 y 
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Figure. 1 A rectangular plate subjected to a uniaxial in-
plane load 
 
 The governing equation for buckling and vibration of 
thin isotropic plate can be written as; 
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respectively.  
where w = out-of-plane displacement 
  ρ = mass of plate per unit area 

  D =
3

212(1 )

Et

ν−
(Plate flexural rigidity) 

       xN = buckling load  
  Nx = applied in-plane load  
        *ω = natural frequency of the plate with applied  
           in-plane load Nx

 

It should be noted that xN  and Nx refer to the same in-

plane load, however, xN  is the buckling load which must 
be a compressive load (negative value), while Nx is the 
applied in-plane load which can be either tension or 
compression.  
 For a given rectangular plate, the relationship 
between the natural frequency and an applied in-plane 
load Nx can be determined by considering the governing 
equations, Eq.(1 and 2). For a specimen with a given 
boundary conditions, it is widely known that buckling 
mode and vibration mode of the plates are identical. 
Specifically, the out-of-plane displacement of the buckled 
plate is identical to the out-of-plane displacement of one 
of the vibration mode. So, for a given specimen, the 
governing of the buckling problem can be rewritten as. 
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Similarly, the governing of the vibration of loaded plates 
is written as; 
  ( ) ( ) ( )*2
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where    ( )3
wL w

D
ρ

=  

It should be noted that the terms contained derivatives of 
w for both problems are the same because the buckling 
mode and vibration mode are identical. From Eq.(3), the 
buckling load of plate can be written as; 
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Similarly, the natural frequency of plate with and without 
the applied in-plane load can be written as; 
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where 
*ω  is natural frequency of a plate with applied load Nx 

ω is natural frequency of a plate without applied load  
 
From Eq.(5-7), ratio of the square of natural frequency of 
the loaded plate to that of the unloaded plate is written as; 
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Since buckling load xN  and natural frequency of the 
unloaded plate ω is constant for a given specimen, it is 
concluded that square of the natural frequency of the 
loaded plate *2ω  is linearly varied with the applied load 
Nx. Since this relationship is derived from the governing, 
it is independent of boundary conditions.  
 From the linear relationship between *2ω and Nx 
shown in Eq.(8), with the buckling load being a negative 
value, it is notice that the natural frequency of the plate 
increases with the applied tensile load. On the other hand, 



 

 

it is decreased with the applied compression. Moreover, if 
the applied load Nx equals the buckling load of the plate, 
the natural frequency *ω  theoretically equals zero. With 
this observation, ones can utilize the natural frequencies 
of the loaded plate to predict the buckling load of plate by 
plotting *2ω versus the in-plane load Nx. The buckling 
load could be determined from the applied load Nx at 
which the natural frequency approaches zero. 
 
3. Numerical investigation 
 To verify the relationship between the natural 
frequency and buckling load of plate, natural frequencies 
of the loaded plate and buckling load of plate are 
determined. The vibration mode and buckling load are 
also investigated. Since the closed form solutions are 
available for all edges simple support (SSSS) specimen 
only, the numerical method is used in this study. Both 
vibration and buckling problems are solved using the Ritz 
method [6]. The total potential energy for the vibration of 
loaded plate can be written as; 
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and the total energy for the buckling problem is represent 
by; 
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To determine the natural frequency of the loaded plate, 
Eq.(9) is considered by treating Nx as a applied load 
which is known and *ω is the unknown to be determined. 
For buckling behavior, the total energy in Eq.(10) is used 
with an unknown variables xN . To solve both problems, 
the out-of-plane displacement w is assumed to be; 
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Amn are the unknown coefficients representing vibration 
mode or buckling mode. ( ) and ( )m nX x Y y are the basis 
functions satisfied the boundary conditions at x = 0 , x = 
a and y = 0 , y = b, respectively. In this study, beam 
function is chosen as basis functions. For simple support 
on both ends, the function is represented by a well-known 
double sine series. For other boundary conditions, the 
beam functions can be written in form of; [7] 
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where ϕ is either X or Y, and r can be x or y. The values 
of γm and λm depend on the boundary condition of the 
plate. For case of clamp boundary condition on both 

ends, λm can be determined from roots of;  
  cos cosh 1m mλ λ = , 
and γm is determined from; 
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For clamp-free boundary condition where one end is 
clamped and one end has no support, λm is determined 
from roots of; 
  cos cosh 1m mλ λ = −  
and γm is determined from; 
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The basis functions for the first four modes for the cases 
of clamp-clamp boundary condition and clamp-free 
boundary conditions are plotted as examples in Fig.(1) 
 To solve for the natural frequency and buckling load, 
the total potential energy is determined for each problem 
by substituting the approximate displacement functions 
Eq.(11) into the total potential energy Eq.(9,10), 
respectively. The displacement functions must be 
selected according to the boundary conditions of the 
plate. After performing integrations, the total potential 
energy is written in term of the undetermined coefficients 
Amn and the natural frequency *ω  or buckling load xN for 
vibration and buckling problems, respectively. According 
to the principle of minimum total potential energy, the 
total potential energy is minimized with respect to the 
unknown coefficients Amn according to; 
  0

mnA
∂Π

=
∂

                  (13) 

Eq.(13) is a system of M×N linear equations, which can 
be rearranged as a matrix form of generalized eigenvalue 
problems as: 
 *2[ ][ ] [ ][ ] 0A C B Cω− = , for vibration problem, and (14a) 
 [ ][ ] [ ][ ] 0xA C N B C+ = , for buckling problem.         (14b) 
where [A] and [B] are square matrices whose elements are 
determined from the plate properties. [C] is a column 
matrix of eigenvector Amn. *2ω and xN are the eigenvalues 
representing square of natural frequency and buckling 
load of plate, respectively. A number of eigenvalues will 
be obtained after the generalized eigenvalue problem 
equation, Eq.(14), is solved. For vibration problem, each 
eigenvalue is square of the natural frequency of plates. 
However, only the lowest eigenvalue of Eq.(14b) is the 
buckling load which is of interest in buckling problem. 
The corresponding eigenvectors of each is used to 
determine the vibration mode or buckling mode by 
substituting into the displacement function Eq.(11). 
 Before implementing the Ritz method, convergence 
studies was performed to ensure that the number of term 
used in the displacement function is enough to give a 
converged solution. An aluminum rectangular plate is 
used in the convergence study. The mechanical properties 
of aluminum are assumed to be E = 70 GPa, v = 0.3, and 
ρ = 2707 kg/m3 with plate thickness of 2 mm. The 



 

 

convergence of a rectangular plates with a = b = 200 mm, 
and all edge clamp boundary condition is shown in Fig 2. 
It is observed that the buckling load converges when the 
value of m and n in the displacement function equals 5. 
The value of m and n used in this study is 12, i.e. there 
are 144 terms in the displacement function.     
 

 
(a) 

 
(b) 

Figure 1. Displacement functions for (a) clamp-clamp 
  boundary condition and (b) clamp-free  

 boundary conditions. 
   
4. Numerical results 
 In this study, three cases of aluminum plates are 
investigated using a numerical method outlined in the 
previous section. Dimensions, boundary conditions, and 
theoretical bucking load of plate are summarized in Table 
1. The buckling loads are determined from the solution of 
generalized eigenvalue problem, Eq.(14b). This buckling 
load is considered herein as the “theoretical solution.” 
Specimens with two different combinations of boundary 

condition are investigated. For SCSC boundary condition, 
the first letter S and third letter S represent the boundary 
condition on the x = 0 and x = a edges, respectively. 
Similarly, the second and fourth letters represent the 
boundary condition on the y = 0, and y = b edges, 
respectively. To verify the relationship shown in Eq.(8), 
the natural frequency of the loaded plate is determined for 
different applied in-plane loads Nx. The in-plane load can 
be either tension, compression, or no load. A generalized 
eigenvalue problem shown in Eq(14a) is set for the 
specimens with a particular applied load Nx. This applied 
load is treated as a known and constant value. The 
obtained square of natural frequency for each vibration 
mode is plotted against the applied in-plane load as 
shown in Fig. 3-5, for all specimens, respectively.  
 
Table 1. Dimensions and boundary conditions of the  
        specimen 

Specimen 
No. 

Dimension 
a × b (mm2) 

Boundary 
Condition 

Buckling load 

xN , (kN/m)
1 200 × 200 SCSC -97.323 
2 400 × 200 SCSC -88.215 
3 200 × 200 SCSF -21.019 
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Figure 2. Convergence of the buckling load of CCCC  

  aluminum plates  
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Figure 3. Plot of *2ω and Nx of specimen No. 1 
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Figure 4. Plot of *2ω and Nx of specimen No. 2 
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Figure 5. Plot of *2ω and Nx of specimen No. 3 
 
From Fig 3-5, the relationship between *2ω and Nx is 
linear as expected. It is also shown that the natural 
frequency is increased as the in-plane load becomes 
higher in the tensile direction (positive Nx). On the other 
hand, the natural frequency approaches zero when the 
applied load is amplified in the compressive direction 
(negative Nx). The plots of *2ω vs. Nx can be used to 
verified the relationship shown in Eq.(8) by extrapolating 
the value of Nx at which the natural frequency becomes 
zero. The extrapolation can be systematically performed 
by determined the equation representing the relationship 
between *2ω and Nx for each mode of vibration and solved 
for Nx for zero natural frequency. The obtained Nx at zero 
natural frequency of each vibration mode are compared 
with each other. The lowest value of Nx at zero natural 
frequency shown in the figures is the predicted buckling 
load. In the figure, only the equation of *2ω and Nx of the 
vibration mode with the lowest value of Nx at zero natural 
frequency is presented. 
 For the SCSC specimens with aspect ratios of 1 and 
2, it is found that the predicted buckling loads are -97.322 

and -88.215 kN/m, respectively, which are practically 
identical to the theoretical ones. The buckling mode for 
specimen No. 1 is mode 2 since the plot of mode 2 
vibration intersects the applied load axis before other 
modes. With different aspect ratio, the predicted buckling 
mode for specimen No. 2 is mode 3. Predicted buckling 
modes for both cases are agreed with the solutions 
obtained from the buckling problem. Fig.6 shows the 
vibration mode corresponding to the vibration data shown 
in Fig.4. The theoretical buckling mode for specimen 
No.2 which is mode 3 is presents in Fig.7. Clearly, the 
predicted bucking mode using vibration data matches the 
theoretical solution very well. Besides specimen with 
SCSC boundary conditions, a SCSF specimen is also 
investigated. It is found that the derived relationship 
between *2ω and Nx can be used to predicted the buckling 
load with very good accuracy. The predicted buckling 
load for the case of SCSF specimen is 21.020 kN/m 
compared with the theoretical solution of 21.019 kN/m. 
The buckling mode is also very well predicted.  
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Figure 6. Vibration mode shapes of specimen No.2 
 

  
Figure 7. Buckling mode of specimen No.2 

 
 
 



 

 

 
5. Conclusion 
 This research investigates the vibration response of 
isotropic rectangular plates subjected to uniform in-plane 
load. By considering the governing equations of the 
vibration and buckling problems, it is shown that square 
of the natural frequency of the loaded plate is linearly 
varied with the applied load. The natural frequency is 
increased with the tensile load and decrease with the 
compressive load. This relationship is determined without 
a need to solve the differential governing equations, so it 
is applicable for plates with any boundary conditions. It is 
also shown that the square of the nature frequency 
approaches zero when the in-plane load approaches the 
buckling load. The derived relationship is verified by 
theoretically solving the vibration and buckling problems 
of specimens with combinations of boundary conditions. 
The Ritz method is employed to determine natural 
frequency of the loaded plate and buckling load of plate. 
In the process, vibration mode shape and buckling mode 
are also obtained. From the study, the predicted buckling 
load and mode from the vibration data are corresponded 
to the theoretical solution very well.  
 The derived relationship between square of the 
natural frequency and the applied load can be used as an 
alternative method of identifying the buckling load 
experimentally. The advantage of dynamic approach over 
the static approach is that, in the dynamic approach, there 
is no need to drawn lines in the pre-buckling and post-
buckling region. So, the error from human judgment can 
be eliminated. For future study, the derived relationship 
should be verified with the measurement data.  
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