AMM022

การหาระยะการเยื้องศูนย์ของแกนเพลามอเตอร์ไฟฟ้าเหนี่ยวนำสามเฟส โดยการวิเคราะห์กระแสสเตเตอร์ Motor Shaft Misalignment Diagnosis of Three-Phase Induction Motor By Analyzing of Stator Current

มนัส พันธ์ผูก¹, อดุลย์ จรรยาเลิศอดุลย์¹ และ มงคล ปุษยตานนท์²

¹ภาควิชาวิศวกรรมเครื่องกล, ²ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยอุบลราชธานี.

้อ.วารินซำราบ จ.อุบลราชธานี 34190. โทร ¹045-353307, ²045-353335 โทรสาร 045-353333

Manut Punpook¹, Adun Janyalertadun¹ and Mongkol Pusayatanont²

¹Department of Mechanical Engineering, ²Department of Electrical Engineering, Faculty of Engineering

Ubonratchathani University Warinchamrap, Ubonratchathani 34190, Tel ¹045-353307, ²045-353335, Fax 045-353333

Email: m8130287@std.ubu.ac.th ,adun.j@ubu.ac.th and tapt1ubu@hotmail.com

บทคัดย่อ

บทความนี้ศึกษาการเกิดการเยื้องศูนย์ของแกนเพลามอเตอร์ด้วย วิธีการวิเคราะห์สัญญาณ เชิงความถี่ของกระแสที่จ่ายให้กับมอเตอร์ เหนี่ยวนำแบบสามเฟส เพื่อวิเคราะห์ระดับความผิดปกติที่เกิดจากการ เยื้องศูนย์ของมอเตอร์ โดยเน้นศึกษาที่ขนาดของสัญญาณความถี่แถบ ข้าง (Side band frequency) fstf, ซึ่งเป็นความถี่ที่มีความสัมพันธ์กับ ระยะการเยื้องศูนย์ของมอเตอร์ โดยทำการเปรียบเทียบขนาดของ ความถี่ดังกล่าวที่เปลี่ยนแปลงกับขนาดการเยื้องศูนย์ที่เกิดขึ้น จากผล การทดลองพบว่า ระดับของการเยื้องศูนย์ที่เพิ่มขึ้นมีความสัมพันธ์กับ ขนาดของสัญญาณที่ความถี่แถบข้าง fstf, และสามารถใช้เป็นข้อมูลใน การตัดสินว่าระยะการเยื้องศูนย์ของมอเตอร์อยู่ในระดับใด

Abstract

The paper studies technique of shaft misalignment detection of 3-phase induction motor by analyzing of stator current in frequency domain. This study focuses on amplitude deviation of sideband frequency at fs \pm fr which relates to degree of misalignment by using relative comparison with signal amplitude at normal condition. The experimental results show that the change of sideband amplitude can be used as a general criterion to determine degree of misalignment.

1.บทนำ

ในปัจจุบันมอเตอร์เหนี่ยวนำสามเฟสถูกใช้งานอย่างแพร่หลายใน อุตสาหกรรม และเป็นอุปกรณ์ที่ความสำคัญในระบบการผลิต เมื่อมอ-เตอร์เกิดการขำรุดหรือเกิดการเสียหายย่อมมีผลกระทบต่อ ขบวนการ ผลิตและคุณภาพของผลิตภัณฑ์หรือชิ้นงานที่ผลิต รวมถึงความเสียหาย ที่เกิดจากการหยุดทำงานของเครื่องจักร การตรวจสอบมอเตอร์อย่าง สม่ำเสมอเป็นวิธีบำรุงรักษาเชิงป้องกันที่ดีที่สุดเพื่อไม่ให้เกิดการเสีย-หายเนื่องจากการหยุดงานของเครื่องจักร โดยเฉพาะอย่างยิ่งการตรวจ สอบการเยื้องศูนย์ของมอเตอร์ซึ่งเป็นปัญหาหลัก[1] ที่ทำให้มอเตอร์ เกิดการสั่นสะเทือนและตลับลูกปืนเกิดการสึกเหรอ หรือ ชำรุดเสียหาย การตรวจสอบการเยื้องศูนย์ของแกนเพลามอเตอร์ สามารถทำได้หลาย วิธี เช่น ตรวจสอบความร้อนที่ตัวมอเตอร์หรือที่คับปลิ้ง การตรวจสอบ ด้วยเซ็นเซอร์วัดการสั่นสะเทือน หรือ การตรวจสอบโดยการวิเคราะห์ สัญญาณกระแสที่จ่ายให้กับมอเตอร์

บทความนี้ได้ทำการศึกษาและวิเคราะห์สัญญาณเชิงความถี่ ของ กระแสไฟฟ้าที่จ่ายให้กับมอเตอร์ ซึ่งผลการทดลอง และงานวิจัยที่ผ่าน มา ได้แสดงให้เห็นว่าการเกิดการเยื้องศูนย์สามารถตรวจสอบได้ด้วยวิธี วิเคราะห์สัญญาณกระแส แต่จากการศึกษาพบว่ายังมีข้อมูลไม่เพียงพอ ที่จะกำหนดเกณฑ์ดัดสินว่า ระดับการเยื้องศูนย์อยู่ในค่าที่ยอมรับได้ หรือไม่ ดังนั้นการวิจัยชิ้นนี้ จึงมุ่งเน้นหาข้อมูลเชิงสถิติ เพื่อหาค่าที่ เหมาะสมและใช้เป็นเกณฑ์ในการตัดสิน ระดับการเยื้องศูนย์เพื่อเป็นข้อ มูลในการบำรุงรักษามอเตอร์หรือส่งสัญญาณเดือน เมื่อต้องทำการปรับ การเยื้องศูนย์หรือการเปลี่ยนตลับลูกปืนใหม่ และเพื่อพัฒนาระบบการ ตรวจสอบแบบ Real time ซึ่งเครื่องมือและอุปกรณ์ในการวัดชนิดนี้

AMM022

สามารถหาซื้อได้ทั่วไป และราคาไม่สูงเมื่อเทียบกับระบบการตรวจสอบ แบบวัดความร้อนหรือ การวัดการสั่นสะเทือน และสามารถติดตั้งได้ง่าย

2. การเยื้องศูนย์ของเพลามอเตอร์

ลักษณะการเกิดการเยื้องศูนย์ของแกนเพลามอเตอร์ สามารถแบ่ง ได้เป็น 2 ชนิดคือ

2.1) Offset misalignment เมื่อแนวแกนของเพลาที่ต่อกับอยู่ใน ระนาบเดียวกันแต่ศูนย์กลางการหมุนของแต่ละเพลาขนานกัน

2.2) Angular misalignment เมื่อแนวแกนของเพลาที่ต่อกับไม่อยู่ ในระนาบเดียวกันและศูนย์กลางการหมุนทำมุมซึ่งกันและกันกัน

รูปที่ 1 การเกิดการเยื้องศูนย์ของแกนเพลามอเตอร์

รูปที่ 2 ความสัมพันธ์ระหว่างความเร็วรอบมอเตอร์และการเยื้องศูนย์ [2]

จากรูปที่ 2 สังเกตได้ว่าระยะการเยื้องศูนย์ของแกนเพลาที่ยอม รับได้ แปรผกผันกับความเร็วรอบของมอเตอร์ เพราะที่ความเร็วรอบสูง แกนเพลาจะมีแรงเหวี่ยงสูง มีผลทำให้มอเตอร์เกิดการสั่นและทำให้ อายุการใช้งานตลับลูกปืนสั้นลง แต่ข้อมูลดังกล่าวสามารถใช้อธิ-บายความสัมพันธ์ค่าการเยื้องศูนย์และความเร็วรอบของมอเตอร์ที่ ต่อกับโหลดผ่านคับปลิ้งแบบชนิดอ่อน (Flexible Coupling) เท่านั้น

3. หลักการทำงานพื้นฐานของมอเตอร์เหนี่ยวนำสามเฟส

มอเตอร์เหนี่ยวนำสามเฟสมีหลักการทำงานพื้นฐานกล่าวคือ การ สร้างสนามแม่เหล็กหมุน (Rotating Field) ที่ขดลวดสเตเตอร์ (Stator Winding)ด้วยระบบไฟฟ้าสามเฟส ซึ่งสนามแม่เหล็กหมุนนี้จะเหนี่ยวนำ ให้เกิดแรงเคลื่อนไฟฟ้าที่โรเตอร์ และมีกระแสไหลในโรเตอร์ซึ่งกระแส ดังกล่าวจะสร้างสนามแม่เหล็กขึ้นที่ผิวของโรเตอร์ ซึ่งสนามแม่เหล็กทั้ง สองจะ modulate กันด้วยความถี่ (f_s±f,) และขนาดของสัญญาณนี้จะ ขึ้นอยู่กับระยะช่องว่างอากาศ ดังนั้นหากช่องว่างอากาศมีการเปลี่ยน แปลง ก็จะส่งผลโดยตรงต่อขนาดของสัญญาณที่ความถี่ดังกล่าว ความถี่(f_s±f,) สามารถอธิบายได้จากสมการ [3]

$$f_{ecc} = \left| f_s \pm k f_r \right| = f_s \left[l \pm 2m(1-s) / p \right] \tag{1}$$

fecc	=	ความถี่ที่เกิดจากการเยื้องศูนย์ (Hz)
fs	=	ความถี่ที่จ่ายให้มอเตอร์ (Hz)
k	=	1,2,3
fr	=	ความเร็วรอบมอเตอร์ (Hz)
т	=	1,2,3
s	=	ค่า slip ของมอเตอร์
р	=	จำนวนขั้วของมอเตอร์

4. วิธีการทดลอง

มอเตอร์ที่ใช้ในการทดลองมีขนาด 4 kW, 50 Hz, 4 poles 1450 rpm ระยะช่องว่างอากาศที่วัดได้เท่ากับ 0.125 มม. ชุดทดลอง ประกอบด้วยมอเตอร์ที่ต่อกับแกนเพลาที่สร้างขึ้น ทำให้สามารถปรับ การเยื้องศูนย์ได้ สัญญาณกระแสที่จ่ายให้มอเตอร์วัดผ่านหม้อแปลง กระแส (Current Transformer) ในอัตราส่วน 50/5 และทำการแปลง สัญญาณกระแสให้อยู่ในรูปสัญญาณแรงดัน โดยนำตัวต้านทานขนาด 0.5 Ω มาต่อไว้ที่ขั้วของหม้อแปลงกระแส จากนั้นนำสัญญาณที่ได้ต่อ เข้าวงจรกรองความถี่ต่ำที่มีแถบความถี่ผ่าน 0-500 Hz และทำการ ขยายสัญญาณโดยวงจรขยายให้มีขนาด ±5 V เพื่อเข้าสู่ระบบเก็บข้อมูล โดยการแปลงสัญญาณอนาลอกเป็นดิจิตอล โดยใช้ A/D Card 16 Channel , Analog input ,Sampling rate 100 kHz, PCI interface ใน การวัดแต่ละครั้งใช้เวลาเก็บข้อมูล 16 วินาทีด้วยความถี่สุ่ม (Sampling และข้อมูลที่วัดได้จะถูกบันทึกไว้ในคอมพิวเตอร์ frequency) 8 kHz จากนั้นใช้โปรแกรมคำนวณทางคณิตศาสตร์ เรียกข้อมูลที่บันทึกไว้มา ทำการวิเคราะห์เพื่อหาสภาวะความผิดปกติ ในการทดลองนี้ได้ปรับการ เยื้องศูนย์ของแกนเพลามอเตอร์จากสภาวะปกติ เป็น 0.02 มม. 0.03 มม. 0.05 มม และ.0.07 มม. ตามลำดับ โดยทดสอบมอเตอร์ในสภาวะ ไม่มีโหลด (No load) ความเร็วรอบของมอเตอร์ขณะทดลองวัดได้ 1440 rpm

18-20 October 2006, Mandarin Golden Valley Hotel & Resort Khao Yai, Nakhon Ratchasima

AMM022

รูปที่ 3 แสดงแผนภาพการวัดสัญญาณจากมอเตอร์เหนี่ยวนำสามเฟส 4.ผลการทดลอง

สัญญาณกระแสในโดเมนความถี่เมื่อมอเตอร์อยู่ในสภาวะปกติ

รูปที่ 4 แสดงสัญญาณความถี่ที่ (fs±fr) เมื่อเกิดการเยื้องศูนย์ 0.01 มม.

รูปที่ 5 แสดงสัญญาณความถี่ที่ (fs±fr) เมื่อเกิดการเยื้องศูนย์ 0.02 มม.

รูปที่ 6 แสดงสัญญาณความถี่ที่ (fs±f,) เมื่อเกิดการเยื้องศูนย์ 0.03 มม.

ME NETT 20th หน้าที่ 98 AMM022

School of Mechanical Engineering , Suranaree University of Technology

18-20 October 2006, Mandarin Golden Valley Hotel & Resort Khao Yai, Nakhon Ratchasima

AMM022

จากการทดลองเมื่อมอเตอร์ทำงานภายใต้สภาวะไม่มีโหลด ที่ ความเร็วรอบ 1440 rpm ความถี่ที่สัมพันธ์กับระยะการเยื้องศูนย์ (f_s±f_r) สามารถคำนวณ ได้จากสมการ

$$\left| f_s \pm k f_r \right| = f_s \left[l \pm 2m(1-s) / p \right]$$

แทนค่า *fs* = 50 Hz , *m* = 1 , *s* = 0.04 ,และ *p* = 4 ดังนั้น f_s-f_r = 26 Hz และ f_s+f_r = 74 Hz

จากผลการทดลองโดยปรับแกนเพลามอเตอร์จากสภาวะปกติที่ ไม่มีการเยื้องศูนย์สามารถวัดขนาดของความถี่ f_s - fr และ f_s + f_r ได้ -62.74 และ -67.20 dB ตามลำดับ ดังแสดงในรูปที่ 4 ซึ่งมอเตอร์ปกติ สามารถเกิดการเยื้องศูนย์ได้เล็กน้อยเนื่องจากตลับลูกปืน ถูกออกแบบ ให้มีระยะคลอนภายใน ซึ่งระยะคลอนภายในนี้ขึ้นอยู่กับการออกแบบ ของบริษัทผู้ผลิตซึ่งโดยทั่วไประยะคลอนภายในตลับลูกปืนมีค่าระหว่าง 0.005 - 0.012 mm [4]

เมื่อทำการปรับระยะการเยื้องศูนย์เพิ่มขึ้น จากสภาวะปกติเป็น 0.02 มม.,0.03 มม., 0.05 มม และ.0.07 มม.ตามลำดับพบว่าขนาดของ สัญญาณที่ความถี่ f_s - f_r และ f_s + f_r มีขนาดเพิ่มขึ้นสัมพันธ์กับระยะการ เยื้องศูนย์ที่เพิ่มมากขึ้น อย่างไรก็ตามจากการทดลองพบว่าขนาดของ สัญญาณที่ความถี่ 50 Hz ไม่มีการการเปลี่ยนแปลง ดังแสดงในตารางที่ 1 และรูปที่ 9

ตารางที่ 1 ความสัมพันธ์ระหว่างการเยื้องศูนย์กับขนาดของสัญญาณ ของความถี่ที่ f_s, f_s-f_r และ f_s+f_r

ระยะการเยื้อง	f _s -f _r	f _s	f _s +f _r
ศูนย์ (mm)	(dB)	(dB)	(dB)
0.00	-62.74	-3.30	-67.20
0.02	-49.06	-3.57	-45.37
0.03	-43.98	-3.74	-41.98
0.05	-40.32	-3.55	-39.15
0.07	-38.45	-3.25	-36.49

รูปที่ 9 ความสัมพันธ์ระหว่างการเยื้องศูนย์กับค่า f_s, f_s - f_r และ f_s + f_r

5.สรุปผลการทดลอง

จากการทดลองพบว่าขนาดของสัญญาณที่ความถี่ f_s ± f, เพิ่มขึ้นมี ความสัมพันธ์กับระยะการเยื้องศูนย์ที่เพิ่มขึ้นโดยเฉพาะการเยื้องศูนย์ที่ มีระยะน้อยกว่า 0.03 มม. ซึ่งสามารถใช้เป็นตัวบ่งซี้ สภาวะผิดปกดิที่ เกิด จากการเยื้องศูนย์ได้ และนำไปสู่การหาเกณฑ์ที่สามารถตัดสินว่า การเยื้องศูนย์ของมอเตอร์อยู่ในระดับใด

งานวิจัยชิ้นนี้มีแผนการดำเนินงานขั้นต่อไปคือการทดสอบมอเตอร์ ที่มี ขนาดเดียวกัน และขนาด 5.5 kW ขนาดละสองตัวจากบริษัทผู้ผลิต เดียวกันเพื่อหาข้อมูลเชิงสถิติเพื่อสร้างเกณฑ์ การตัดสินว่าระยะการ เยื้องศูนย์ของมอเตอร์อยู่ในสภาวะใด และพัฒนาโปรแกรมทางคอมพิว เตอร์เพื่อสร้างระบบการตรวจสอบแบบ Real Time

6.เอกสารอ้างอิง

- WT Thomson, 2003, "Case Histories of Current Signature Analysis to Detect Faults in Induction Motor Drives", IEMDC'03. IEEE International, Vol 3, pp.1459-1465
- [2] John Piotrowski, 1995, "Shaft alignment Handbook", Marcel, Vekker, New York
- [3] Hanifi Guldemir, 2003," Detection of air gap eccentricity using line Current spectrum of induction motor ", Electric Power Systems Research, Vol64, Number 2, pp. 109-117 (9) Turkey
- [4] NSK, "Rolling Bearing" CAT.NO.E1102c http://www.nsk.com/ (access on June 2006)

