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Abstract 

In digital photoelasticity, the determination of the 
isoclinic parameter in its physical range is still the 
difficult problem. A recent work proposed by the author 
and his co-worker can effectively unwrap the orientation 
map regardless the existence of the singularity. The 
technique involves the detection of the singularity and the 
preservation of them for final processing with a certain 
limitation. In this paper, a method for accurately 
detecting the positions of the singularity is proposed and 
evaluated with the orientation maps of the circular ring 
under compressive load obtained on the basis of the 
phase-shifting technique. Experimental results are also 
presented and discussed. 
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1. Introduction 
 Photoelasticity is a powerful experimental technique 
which enables a complete stress analysis to be carried out 
on engineering structural components at the design stage. 
However, the analysis can be tedious process and is 
normally only carried out by an expert. At present day, 
the field of digital photoelasticity has been developed by 
integrating a new data acquisition and data processing to 
the conventional photoelasticity. 
 In digital photoelasticity, two fringe patterns, i.e., an 
isoclinic fringe pattern and an isochromatic fringe pattern, 
are given in the form of a digital image (an intensity data). 
These fringe patterns provide both magnitude and 
directions of stresses. The isoclinic fringe pattern enables 
the isoclinic parameter φ, which directly relates to the 
principal stress directions or directional map, to be 
determined whereas the isochromatic fringe pattern 
enables the isochromatic parameter δ, which directly 
relates to (σ1 − σ2), to be evaluated. 
 For φ, a number of automated whole-field approaches 
have been proposed to determine it, particularly the 
whole-field method based on phase-shifting technique 
(PST) [1]. By PST, two problems arise when calculating 
φ, i.e., the isochromatic-isoclinic interaction [1] and 
wrapped phase map. The first problem occurs because of 

the unreliability of the isoclinic parameter at and near the 
isochromatic fringe skeleton. The wrapped phase data 
arises because only unambiguous phase is known at most 
in the range (−π/4, +π/4]∗ instead of (−π/2, +π/2]. 
 For the wrapped isoclinics, if it is left unsolved, the 
ambiguity exists on whether the map of isoclinics shows 
σ1 or σ2 directions over the entire domain. That this map 
of wrapped isoclinics can refer to both principal-stress 
directions leads to the name ‘orientation map’. 
 To bring φ to its physical range, a phase unwrapping 
(PU) is necessary. Recently, PU was proposed to unwrap 
the map of wrapped in which the singularity was taken in 
the consideration [2]. In that work, the crucial step is to 
detect the singularity and only one orientation map was 
used. The binary mask image representing the points 
detected shows some erroneous detected positions. 
 In this paper, the detection of such points based on 
the combination of the orientation maps is present. The 
detection technique is applied to the problem of circular 
ring under compression. 
 
2. Computation of Principal-stress Directional Field 
2.1 Theoretical aspect 
 The theoretical expression of the isoclinic parameter 
φ is well known as  
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where σxx, σyy and τxy are the two-dimensional stress 
components in the Cartesian coordinates. 
       Then, for φ, inverting Equation (1) yields 
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Equation (2) provides φ ∈ (−π/4, +π/4] by using the 
ordinary arctangent operation. It should be noted here that 
even though Equation (1) is theoretically derived, the 
ambiguity always exists unless PU is applied. 
 
Table 1. Types of the singularity for different values of 
the Cartesian stress components in Equation (2) [4] 
 

∗ (a, b] represents a < x ≤ b in which x is a variable of interest. 

Stress condition 
 

Singularity 
 

σxx = σyy ≠ 0 and τxy = 0 isotropic point 
σxx = σyy = 0 and τxy = 0 singular point 
σxx = σyy = ∞ and τxy = ∞ pole2 
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2.2 Experimental aspect based on photoelasticity 
 An equation of the intensity I for different angular 
positions θ at the steps m of the dark-field plane 
polariscope with the white light source (Figure 1) can be 
expressed as [1] 
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λ (= R, G, B) is the primary wavelengths of the white 
light source, Δλ = λ2  − λ1 in which λ2 and λ1 are the upper 
and lower limits of the spectrum of the light, Ip,λ is the 
light coming out of the polarizer, Nλ (= δλ / 2π) is the 
relative fringe order and Ib,λ is the background intensity. 
 The expression for the orientation field of isoclinics 
based on the application of the four-step phase shift 
method to Equation (3) for m  = 1, 2, 3, and 4 can be 
written as [2, 3] 
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The subscript ‘w’ denotes that φ is of wrapped isoclinics 
of the range (0, +π/4] due to the use of the ordinary 
arctangent operation. 
 
3. Definition of Singularity 
 The singularity is one of the properties of the 
orientation or the directional field of isoclinics in which 
the state of stresses satisfies certain conditions. The 
following well-known theoretical formula will help in an 
explanation of the formation of the singularity. 
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As seen in Equation (2), there are three cases that can 
cause the singularity in such orientation or directional 
field of the isoclinics. 
3.1 Isotropic point 
 A point at which the state of stresses satisfies the first 
condition shown in Table 1 is called an isotropic point  
[4]. At this point, σ1 = σ2 = σ ≠ 0 (Equation (8)) and, 
consequently, φ is indeterminate at such point (Equation 

(2)). However, this indetermination means that the 
isoclinics of all different parameters of φ can pass 
through and intersect each other at the point.  
 This can be explained by considering the following 
expression of the shear stress τ in terms of the principal 
stress difference. 
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 Since at the principal plane at which the principal 
stresses act, no shear stresses act on the plane; therefore, 
τ = 0. Considering Equation (9) reveals that τ = 0 
regardless of the values of φ when (σ1 − σ2) = 0. It should 
be noted further that to satisfy the condition σ1 = σ2 = σ ≠ 
0 and (σ1 − σ2) = 0, the magnitude and the sign of the 
principal stresses must be the same. As a result, at the 
isotropic point, the state of the stress is of hydrostatic.  
 Since the physical range of isoclinics is of (−π/2, 
+π/2] with modulo +π, then, in the map of the directional 
field, the line representing the end of this period as an 
abrupt isoclinic jump appears only one side of the 
isotropic point if such point is of a first order [1].  
 For other maps of orientation field (e.g., [0, +π/2], 
(−π/4, +π/4], and so on), there are at least two lines of 
abrupt isoclinic jumps passing through the isotropic point. 
These abrupt isoclinic jumps have the same signs. These 
signs identify the type of the isotropic point, i.e., positive 
or negative type.  
 If the isotropic point is of positive type, the isoclinics 
gradually vary around such point counterclockwise. In 
contrast, that point is of negative type if the isoclinics 
change the values clockwise around it [5]. 
3.2 Singular point 
 If the state of stresses of a point satisfies the second 
condition shown in Table 1, such point is called a 
singular point. The singular point may be considered to 
be a special case of the isotropic point since it is a point 
at which σ1 = σ2 = 0.  
 The singular point always lies on a shear-free 
boundary (Equation (9)). Therefore, the isoclinics of 
some parameters φ converge at the singular point. The 
reason is that at such boundary one of the principal 
stresses being normal to the boundary does not exist. 
Therefore, to satisfy the condition σ1 = σ2 = 0, the 
singular point must lie on such shear-free boundary. 
 The appearance of the lines representing the abrupt 
isoclinic jumps converging at the singular point is similar 
to those of the isotropic point. However, it may be 
difficult to exactly determine the singular point because 
the position on the model boundary at which the 
isoclinics converge strongly depends not only on the load 
condition but also on the geometrical shape of the model 
studied. 
 Under some circumstances, the singular point 
expresses itself as a series of points or a singular line. The 
circular disk under diametral compression possesses the  
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singular line along its boundary. However, it is not an 
issue here because of the lack of the presence of the 
isotropic point.  

The singular point usually shows a change of the 
signs of stresses, i.e., a transition from tension to 
compression and vice versa. Furthermore, the singular 
point is always of negative type [1]. 

 
3.3 Load application point and support (poles) 

A point at which the applied load acts is known as an 
action point whereas a point at the support is termed as a 
reaction point. However, they are known as poles [4]. 
The state of stresses at these points is of the last condition 
shown in Table 1. At them, the principal-stress difference 
(σ1 − σ2) approaches +∞. 

Since, by nature, the poles behave as though they 
were the singular point, then, the number of the lines 
representing the abrupt isoclinic jumps converging at the 
poles is also difficult to predict; however, unlike the 
singular point, the poles are of positive type [2]. 
 
4. Modulated Intensity 

As seen in Equation (4), Imod,λ is the function of the 
wavelength λ and the fringe order Nλ by which the 
relation between the fringe order and the principal-stress 
difference is expressed as [1] 
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where h is the thickness of the model studied and fσ,λ is 
the well-known material stress fringe value obtained by 
calibration at wavelength λ.  

Since, at the isotropic point and the singular point, (σ1 

− σ2) = 0, then, at such points Nλ = Imod,λ = Imod = 0 (see 
Equations. (4) and (10)). This is the condition of the 
zeroth-order fringe. Then, the isotropic point and the 
singular point are seen as dark spots or regions in the map 
of the modulated intensity regardless the wavelengths 
used. By this fact, Imod can be used to detect such points.  

It is worthy to note that when dealing with the real  

Table 2. Values of parameters used in the detection of the 
singularity [2] 
 
 
 
 
 
 
data, the condition may not give the correct positions 
because, at such points, the intensity may not be exact 
zero. As a result, it is possible to apply a tolerance to 
cope with this situation.  

Then, if the values of Imod at any point or pixel in the 
map is less than that of Tmod Imod,max, where Tmod is a 
predefined threshold or tolerance having values between 
0.1 to 0.2 and Imod,max is the maximum value of the map of 
Imod, such pixel is considered to be the singularity, 
especially the isotropic and singular points. 
 
5. Method of Detection of Singularity 

The method of detection of the singularity is as 
followings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Results and Discussion 
 The dark-field plane polariscope system used is the 
same as that already reported [2] and it is graphically 
shown in Figure 1. To examine the proposed method, it 
was applied to the problem of the circular ring under 
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• Detection of the singularity-to-be pixels: this is 
done by performing a raster scan over the 
orientation maps of the ranges [0, +π/2] and 
(−π/4, +π/4] using a mask window wm×n and 
over the map of modulated intensity with the 
condition Tmod Imod,max. The pixels detected are 
separately stored into three binary arrays, i.e., 
A[0, +π/2], A(−π/4, +π/4] and Amod, respectively. Note 
that these arrays are initially populated with one 
value and for the singularity the corresponding 
pixels are reset to zero value. 
 

• Selection of the singularity: since, in all those 
three arrays, the pixels representing the 
positions of the singularity have the zero value, 
then, for clarity, let the parameters α, β, and γ, 
respectively, be the pixel values in those three 
arrays. Also let Asin be another binary array for 
storing final results which is initially populated 
with one value. Two following operations are of 
interest and they are: 

(1) Doublet function D(α, β). For the same 
position of two pixels in both arrays A[0, +π/2] and 
A(−π/4, +π/4], if D(α, β)  =  D(0, 0), the pixel in 
array Asin is assigned to be the singularity by 
setting it to zero value. 

(2) Triplet function T(α, β, γ). For the same 
position of three pixels in the arrays A[0, +π/2], 
A(−π/4, +π/4], and Amod, if T(α, β, γ)  =  T(0, 0, 0), 
the pixel in array Asin is assigned to be the 
singularity by setting it to zero value. 
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Figure 1. Dark-field plane polariscope system with the 
white light source having the circular ring model being 
placed inside and vertically loaded by a force. 
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Tmod 0.1 
Detecting mask window, wm×n w21×21 
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diametral compression. The model was made of 6-mm 
thick epoxy resin plate with 10-mm inner and 30-mm 
outer diameters. 
 Once the model was properly placed in the 
polariscope system and loaded by a force P of 274 N, the 
four photoelastic fringe images were digitally collected 
for four different configurations of the polariscope. 
Figure 2 shows these fringe images. The digital camera 
used for the collection of the color photoelastic fringe 
images was of Nikon model D70.  
  Figure 3(a) shows the resultant map obtained after 
applying Equation (5) to Figure 2 with normalization [2, 
3]. It should be noted that this orientation map shows φw 
∈ [0, +π/4]. Figures 3(b)-(c) report the orientation maps 
of the range [0, +π/2] and (−π/4, +π/4], respectively. 
They were obtained from Figure 3(a) using the simple 
logic operations [2]. Figure 3(d) displays the map of Imod. 
It should be noted here that this model contains two 
isotropic points and eight singular points [5].  
 Close scrutiny of Figures 3(a)-(c) reveals that the 
lines representing the abrupt isoclinic jumps are not 
smooth as they should be. This because the isochromatic-
isoclinic interaction. That is, Equation (5) is theoretically 
invalid when Imod = 0; however, for the experimental data, 
the true condition is Imod ≈ 0. Hence, the closer are the 
values of Imod  to zero; the more obvious is the effect of 
the isochromatics on the maps of the isoclinics.  
 Comparing Figures 3(a)-(d) to (e) shows that the 
positions of the isotropic points, singular points and poles 
are clearly observed, particularly, the isotropic points (see 

    
 
 

    
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
circles in Figure 3(b)). However, the four singular points 
lying on the inner boundary are rather vague. The other 
four singular points lying on the outer boundary are seen 
since the lines representing the abrupt isoclinic jumps 
pass through them (Figures 3(a)-(c)). Their positions can 
be also observed in Figure 3(d) as the dark regions 
making the outer boundary incomplete.  
 Figure 4 shows the binary images representing the 
positions of the singularity. Figure 4(a) was the result of 
the raster scan over Figure 3(b) whereas Figure 4(b) was 
obtained by performing the raster scan over Figure 3(c). 
Figure 4(c) shows the map of the singularity found by the 
condition Tmod Imod,max. These maps were obtained using 
the parameters shown in Table 2. Figures 4(d) and (e) 
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Figure 2. Experimentally generated color photoelastic 
fringe images of circular ring for four different angular 
configurations of the crossed polarizer and analyzer. (a) 
θ  = 0, (b) θ  = +π/8, (c) θ  = +π/4, and (d) θ  = +3π/8. 
(Printed in black and white.) 

(a) (b) 

(c) (d) 

Figure 3. Orientation maps and Modulated intensity map. 
(a) orientation map (0, +π/4], (b) orientation map [0, 
+π/2], (c) orientation map (−π/4, +π/4], (d) modulation 
map and (e) position of the singularity. ‘I’, ‘S’ and ‘P’ 
label the isotropic points, singular points and poles, 
respectively. The values of the modulated intensity and 
of isoclinics are separately and linearly converted into 
the 256-gray levels where 0 represents deep black and 
255 represents pure white. 

(c) (d) 

(a) (b) 

(e) 
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report the results obtained by D(α, β) and T(α, β, γ), 
respectively.  
 Observing Figures 4(a) and (b) reveal that the 
isotropic points and poles were correctly detected. This 
can be confirmed by considering Figure 4(c). However, 
there are other detected positions that are not of the 
singularity (see circles in Figure 4(a)). As seen, these 
erroneous regions do not appear in Figure 4(b) since the 
isoclinics around the regions are continuous (Figure 3(c)).  
 After completely performing the doublet function, 
the erroneous regions were discarded whereas as for the 
triplet function, the map shows only the isotropic points 
and small dark region at the bottom (Figure 4(e)). It 
should be noted that at the poles, (σ1 − σ2) approaches +∞; 
thus, such small dark region appeared in Figure 4(e) is 
not the result of the condition Tmod Imod,max. However, due 
to the applied load, the geometrical shape of the model at 
the poles may be slightly deformed and this effect makes 
a variation in the values of Imod. As a result, some values 
of Imod may be lower than such condition and then it was 
found as the singularity (considering Figure 4(c) for the 
bottom portion). It is informative noting that the poles 
can be only detected by using the abrupt isoclinic jumps 
around them (Figures 4(a) and (b)).  
 For the use of Tmod Imod,max, the isotropic points were 
accurately detected as the two dark regions in Figure 4(c). 
Nevertheless, the position of the singular points are not 
clear but they can be seen if one makes a scrutiny on 
Figure 4(c) and compare to Figure 3(d) for the dark 
regions lying on the outer boundary. Figure 4(f) shows 
the unwrapped phase map in the physical range (−π/2, 
+π/2]. As seen, the directional field around the isotropic 
points is correct. 
7. Conclusions 

In this paper, the automated technique for detection of 
the singularity has been presented. The technique 
involves the use of the two orientation maps of the ranges 
[0, +π/2] and (−π/4, +π/4] and the map of modulated 
intensity Imod. Results of the binary images show that 
isotropic points can be correctly found using the triplet 
function whereas the singular points and poles are 
detected by the doublet function.  

Due to the mechanical stable at the isotropic points 
and the singular points, this would give a practical benefit 
for the optimum design of the structural members with 
holes for which they are made for wiring, reducing the 
weight of the structures and/or connecting them by 
fasteners (Figures 4(c) and (e)).  

However, in the view of PU, the directional map 
obtained only using the doublet function is good for PU 
requirements [2]. That is, as seen in Figure 4(d), the 
isotropic points, singular points and pole are found. Since 
they can cause failure of PU, totally finding them makes 
PU more stable.  

It is seen that Figure 4(b) can also be used in PU as in 
the case Figure 4(d) because they look alike. However, 
this similarity may not happen of other models; therefore, 
the use of the results obtained from the doublet function 
is more appropriate. 
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Figure 4. Binary images representing the singularity  
obtained from (a) A[0, +π/2], (b) A(−π/4, +π/4], (c) Amod, (d) Asin 
by D(α, β), (e) Asin by T(α, β, γ) and (f) directional map 
of the range (−π/2, +π/2] by which black represents −π/2 
and white represents +π/2. 
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