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Abstract 

A nodeless variable finite element method is 
combined with the flux-based formulation to analyze 
two-dimensional steady-state heat transfer problems.  The 
nodeless variable element employs quadratic 
interpolation functions to provide higher solution 
accuracy without requiring additional actual nodes.  The 
flux-based formulation is applied to reduce the 
complexity in deriving the finite element equations as 
compared to the conventional finite element method.  The 
solution accuracy is further improved by implementing an 
adaptive meshing technique to generate finite element 
mesh that can adapt and move along with the solution 
behavior.  The effectiveness of the combined procedure is 
evaluated by steady-state heat transfer problems that have 
exact solutions. 
Keywords:  Flux-based formulation, Finite element 
method, Heat transfer 
 
1. Introduction 
 The finite element method has been widely used to 
solve for the response of aerospace structures caused by 
the thermal effect in the past decades [1,2].  The solution 
accuracy is improved by simply refining the finite 
element model using consecutively smaller elements until 
a required convergence is met.  The solution accuracy can 
also be improved by using the h-method of adaptation 
where the mesh is globally or locally refined or coarsened 
[2-4], or the p-method by increasing or decreasing the 
order of the element interpolation functions [5].  Also, 
many researchers have proposed improved versions of the 
r-refinement method with moving mesh, so that mesh 
points are moved throughout the domain while the 
connectivity of the mesh is kept fixed [6]. 
 The objective of this paper is to develop a procedure 
to improve the predicted temperature distribution by 
using an alternative finite element method.  The nodeless 
variable finite element is introduced and employed in this 
paper in order to increase the temperature solution 
accuracy.  The nodeless variable finite element uses 

quadratic interpolation functions to describe the 
temperature distribution over the element without 
requiring additional actual nodes.  The paper also 
introduces and implements the flux-based formulation to 
derive the finite element matrices for such nodeless 
variable element.  The flux-based formulation can 
simplify the finite element computational procedure as 
compared to the conventional finite element method. The 
effectiveness of the combined procedure is also evaluated 
by several steady-state heat transfer problems that have 
exact solutions. 
 
2. Nodeless Variable Finite Element Analysis 
 For two-dimensional domain Ω bounded by surface S 
in the x-y coordinate system as shown in Fig. 1, the two-
dimensional steady-state energy equation can be written 
in the conservation form as, 
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where Q(x,y) denotes the heat source function.  The flux 
components E and F are defined by, 
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where T is the temperature and k is the thermal 
conductivity coefficient.  The Poisson’s equation shown 
in Eq. (1) is to be solved together with appropriate 
boundary conditions that may consist of, 
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where h is convection coefficient, T∞ is medium 
temperature for convection, and q is the heat flux normal 
to the surface boundary. 
 The flux-based formulation is implemented herein to 
derive the finite element equations associated with the 
nodeless variable element.  For the triangular nodeless 
variable element, the distribution of the temperature over 
the element is assumed in the form, 
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where ( )⎣ ⎦yxN ,  consists of the element interpolation 
functions, and { }T  is the vector of the unknown 
temperature variables (T1, T2, T3) and the nodeless 
variables (T4, T5, T6).  The element interpolation 
functions, N1, N2, N3 are identical to the element 
interpolation functions L1, L2, L3 used for the standard 
three-node triangular element [5].  The nodeless variable 
interpolation functions implemented in this paper are, 
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To derive the finite element matrices by means of the 
flux-based formulation, the method of weighted residuals 
is first applied to Eq. (1), 
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where Ω  is the element domain.  The Gauss’s theorem is 
then applied to the flux derivative terms to yield, 
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where S is the element boundary.  Substituting Eqs. 7(a)-
(b) into Eq. (6) to yield, 
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In the flux-based formulation, the element flux 
distributions are computed from the actual nodal fluxes 
as, 
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where ⎣ ⎦N  are the standard linear element interpolation 
functions, i.e., ⎣ ⎦321 LLL .  The { }E  and { }F  are the 
vectors of the actual nodal heat fluxes, 
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Substituting Eq. (10) into Eq. (8), the finite element 
equations are, 
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and A is the element area.  The element nodal vector { }R  
is associated with the source function and the vector { }B  
representing the boundary nodal flux vector are, 
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where l and m are the components of the unit vector 
normal to the element boundary.  The vector { }q  
appearing in the above Eq. (13) may be replaced by 
different types of boundary conditions as shown in Eq. 
(3b).  The interpolation functions in Eq. (13) needed for 
integration along a typical element side s in Fig. 2 are, 
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where L is the length of element edge and x is the local 
coordinate along the edge starting from node 1.  The 
finite element equations, Eq. (12) are derived for all the 
elements prior to assembling to yield the system 
equations.  Appropriate boundary conditions of the given 
problem are then applied.  Finally, the system equations 
are iteratively solved for the nodal solutions and the 
nodeless variables using the preconditioned conjugate 
gradients method with an element-by-element 
approximation technique [7]. 
 
3. Adaptive Meshing Technique 
 There are two main steps in the implementation of 
the adaptive meshing technique, the first step is the 
determination of proper element sizes and the second step 
is the new mesh generation [3,4].   The temperature 
variable T is used as the indicator for computing proper 
element sizes at different locations in the domain.  As 
small elements must be placed in the region where 
changes in the primary variable gradients are large, the 
second derivatives of the primary variable at a point with 
respect to global coordinates x and y are needed.  The 
maximum principal quantities are then used to compute 
the proper element size by requiring that the error should 
be uniform for all elements.  It should also be noted that 
the finite element solutions are closely related to the 
quality of the element shapes.  The mesh adaptation 
technique [3,4] implemented in this paper assures to 
provide good quality of the element shapes for all the 
meshes generated.  According to the quality criterion 
presented by Ruppert [8], the minimum angle (γ) for a 
triangle to assure good element aspect ratio is given by, 
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where d denotes the distance.  The value of γ equals to 
60o is used in this paper to calculate the element aspect 
ratio for producing the near-equilateral triangles in the 
process of generating all adaptive finite element meshes. 
 
4. Algorithm Evaluation 
 To evaluate the performance of the nodeless variable 
finite element using the flux-based formulation with the 
implementation of the adaptive meshing technique, three 
boundary value problems that have exact solutions are 
presented.  These problems consist of solving: (1) 
Laplace equation with Dirichlet boundary conditions, (2) 
Plate with highly heating gradient, and (3) 4-steep 
gradient cones in a square region. 
 

, 



 

4.1 Laplace Equation with Dirichlet Boundary 
      Conditions 
 The first example for evaluating the performance of 
the nodeless variable flux-based finite element method is 
to solve the Laplace equation ( 02 =∇ U ) with Dirichlet 
boundary conditions.  The problem statement of a 1×1 
square domain with the specified boundary conditions is 
given in Fig. 3.  The exact solution for the temperature 
distribution is, 
      )1(),( 2 yyxyxT −+=  (16) 
The structured finite element mesh model with 162 
nodeless variable elements (100 nodes) and the predicted 
solution contours are shown in Fig. 4.  Figure 5 shows 
good agreement between the exact and the predicted 
solutions along the edge y = 0. 
 
4.2 Plate with Highly Heating Gradient 
 The Poisson's equation and the boundary conditions, 
that produce a solution with high diagonal gradient in a 
square region, are shown in Fig. 6.  The exact solution [9] 
as given by Eq. (17) has been chosen to give zero values 
on the boundary and exhibit a sharp transition of 
gradients along a region near the diagonal of the domain, 
      ( ) ( ) ( ) )100(tan11, 1 β−−−= yyxxyxT  (17) 
where 8.0)(2 −+= yxβ .  The nodeless variable finite 
element solutions on adaptive meshes, and the 
conventional finite element solution using the standard 
quadratic elements on a uniformly structured mesh, are 
shown in Fig. 7.  Figure 8 shows the comparison of the 
exact and the predicted solutions obtained from the 
nodeless variable finite element method using the 
adaptive meshes, and from the conventional finite 
element method using the standard quadratic elements on 
the uniformly structured mesh.  The figure indicates that, 
in order to obtain the solution accuracy nearly at the same 
level as provided by the third adaptive mesh, a uniformly 
structured mesh (80×80 intervals) with at least 12,800 
quadratic finite elements is required. 
 
4.3 Four Steep Gradient Cones in a Square Region 
 The governing equation and the boundary conditions, 
that generate a solution of the 4-steep heat gradient cones 
in a square region, are shown in Fig. 9.  The exact 
solution with zero values on the boundary and exhibits 4-
steep gradient cones is given by, 
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The nodeless variable finite element solutions using the 
initial and the third adaptive meshes are shown in Fig. 10.  
Figure 11 shows the comparison of the exact and the 
predicted solutions obtained from the nodeless variable 
finite element method using the adaptive meshes.  For 
this example, a uniformly structured mesh (120×120 
intervals) with at least 28,800 quadratic finite elements is 
required in order to produce the solution accuracy nearly 
at the same level as provided by the third adaptive mesh. 
 
5. Conclusion  
 The nodeless variable flux-based finite element 

method was developed to solve the two-dimensional 
energy equation.  The nodeless variable finite element 
and its interpolation functions were described.  The flux-
based formulation was developed and applied to the 
nodeless variable finite element for reducing the 
computational complexity as compared to the 
conventional finite element method.  The solution 
accuracy was further improved by implementing an 
adaptive meshing technique.  The performance of the 
combined procedure was evaluated by using three 
boundary value problems that have exact solutions.  
These problems demonstrate that the combined nodeless 
variable flux-based finite element method and the 
adaptive meshing technique helps increasing the analysis 
solution accuracy, and at the same time, reducing the total 
number of unknowns as compared to the standard 
nonadaptive finite element method. 
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Figure 1. Two-dimensional domain and boundary 
conditions for problem governed by energy equation 

 
 

 
 

Figure 2. Discretization of flux vector q into the actual 
nodes and the nodeless variable on a typical element edge 

 
 
 

 
 

Figure 3. Problem statement of the Laplace equation 
with Dirichlet boundary conditions 

 
 
 

 
 

Figure 4. Structured mesh model and 
 the predicted solution contours 

 
 
 
 
 

 

 
 

Figure 5. Comparison of the exact and the predicted 
solutions of the structured mesh model along edge y = 0 

 
 
 
 

 
 

Figure 6. Governing equation, boundary conditions,  
and solution contours for a plate with 

highly heating gradient 
 
 
 
 

 
 

Figure 7. Uniform and adaptive meshes with  
their solution contours for a plate with 

highly heating gradient 
 
 
 



 

 
 

Figure 8. Comparison of the exact and 
the predicted solutions for a plate with 

highly heating gradient 
 
 
 
 

 
 

Figure 9. Governing equation, boundary conditions, and 
solution contours for 4-steep gradient cones 

in a square region problem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 10. Initial and adaptive meshes with  

their solution contours for a 4-steep gradient cones  
in a square region problem 

 
 

 
 

Figure 11. Comparison of the exact and  
the predicted solutions for a 4-steep gradient cones  

in a square region problem 
 


