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Abstract  
 Comparative performance between the discrete 
Kirchhoff triangular element and the standard rectangular 
element for plate bending analysis is presented.  The 
discrete Kirchhoff triangular element has three nodes, 
while the standard rectangular element contains four 
nodes.  The Galerkin finite element method is employed 
to derive the corresponding finite element equations and 
their matrices for both element types.  Several examples 
that have exact solutions are used to evaluate their 
performances.  Results show that the three-node discrete 
Kirchhoff triangular element performs very well as 
compared to the standard four-node rectangular element. 
Keywords: Finite element method, Discrete Kirchhoff 
triangle (DKT), Transverse deflection 

 
1.  Introduction 
 It has been known that the three-node triangular 
element can provide high flexibility in the construction of 
finite models for complex geometry in two-dimensions.  
A finite element mesh can easily be constructed with 
different element sizes.  The triangular elements can also 
be combined with an adaptive meshing technique to 
provide high solution accuracy at reduced computational 
effort.  An adaptive finite element mesh normally 
contains small clustered elements in the regions of high 
stress gradient to provide accurate solution.  Larger 
elements are constructed in the other regions to reduce 
the total number of unknowns and thus the computational 
time.  However, the use of the standard three-node 
triangular element does not give high solution accuracy 
as compared to the other standard four-node element, 
such as the rectangular element. 
 In this paper, another three-node triangular element, 
so called the Discrete Kirchhoff Triangle (DKT) element 
[1], is investigated.  The element has three unknowns per 
node as the standard triangular element.  The element, 
however, can provide higher solution accuracy, because 
several key assumptions have been made in the 
development of the element.  The performance of the 
DKT element will be compared with those of the standard 
four-node rectangular element [2].  The paper starts from 
explaining the governing equation for the transverse  

deflection of plate.  The corresponding finite element 
equations and the associated element matrices for both 
the DKT element and the standard rectangular element 
are presented.  Finally, the performance of the DKT 
element and the standard rectangular element are 
evaluated by solving several examples.  The predicted 
solutions are compared with the exact solutions of the 
problems.  
      
2.  Governing Equations 
 The equation for the transverse deflection, w, in the 
z-direction normal to the x-y plane of a thin plate with a 
constant thickness of t whose middle plane is coincident 
with the x-y plane, is given by the equilibrium equation in 
the form  [3], 
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where ( )yxp ,  is the applied lateral load normal to the 
plate and D  is the bending rigidity.  The bending rigidity 
is defined by,  
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where E is the modulus of elasticity, ν  is the Poisson’s 
ratio. 
  Depending on the problems, the boundary conditions 
for plates involve the transverse deflection, w, and its 
derivatives.  Typical boundary conditions are simply-
supported, clamped and free edges, including the 
specified deflection.  These different boundary 
conditions, depending on the given problems, are 
imposed prior to solving for solutions. 
  
3.  Derivation of Finite Element Equations  
 Derivation of the finite element equations for the 
Discrete Kirchhoff Triangle (DKT) element and the 
standard rectangular element are briefly described herein. 

3.1 Discrete Kirchoff Triangle (DKT) 
 The derivation of the three-node DKT element 
equations is based on the following assumptions: 1) both 
the x- and y-twist angles vary quadratically over the 



element, 2) the transverse shears are zero at the tip nodes, 
3) the transverse deflection is in form of a cubic function 
over the element, and 4) the twist angles normal to the 
element sides vary linearly.  The finite element equations 
are derived by applying the method of weighted residuals 
to the plate bending equation Eq. (1) leading to the finite 
element equations in the form,  

 [ ]{ } { }FK =δ  (3) 

where the vector, { }δ , contains the element nodal 
unknowns of transverse deflection and the rotations.  
Each node has a transverse deflection in the z-direction 
and the two rotations about the x- and y-directions.  Thus 
there are nine degrees of freedom per element.  The nodal 
force vector, { }F , may be due to the applied loads such as 
the concentrated load and the pressure load.  The stiffness 
matrix and the load vector due to the applied pressure are 
defined by,  
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where the strain-displacement interpolation matrix, [ ]B , 
is defined by,  
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The coefficients kp , kq , kr  and kt , k = 4, 5, 6 depend 
on the element shape and are given by, 
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where the coefficients ijx and ijy , =ji, 1, 2, 3 are 
defined in terms of element nodal coordinates by,  

 jiij xxx −=  jiij yyy −=   (8) 



The matrix [ ]D  in Eq.(4) is the plate material stiffness 
matrix defined by,  
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The above finite element matrices are in closed-form so 
that they can be implemented in the computer program 
directly.  
 
 
3.2 Standard rectangular element 
 The four-node rectangular element is widely used in 
the plate bending analysis because it can provide good 
solution accuracy and its formulation is simple.  The 
element has dimensions of a and b, in the x- and y-
directions, respectively, with the thickness of h.  Each 
node has the transverse deflection, w, and the two 
rotations, θx and θy.  Thus each element contains twelve 
degrees of freedom.  The procedure for deriving the finite 
element equation is similar to that explained in Section 
3.1.  The derivation of the element equations starts from 
using the standard rectangular element interpolation 
functions, Ni(x,y), given by, 
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The full details of the method formulation and the 
element matrices for both the DKT element and the 
standard rectangular element are presented in Ref. [2]. 

4. Results 
 To evaluate the performance of the DKT element as 
compared to the standard rectangular element, the several 
examples that have exact solutions are used as presented 
below. 

4.1 Simply supported square plate under uniform 
distributed load 

 A square 2×2 m simply supported plate with a 
thickness of 0.01 m, subjected to a uniform distributed 
load of 1,200 N/m2, is shown in Fig. 1. The plate is 
assumed to have the modulus of elasticity of 7.2×1010 
N/m2 and the Poisson’s ratio of 0.25.  The exact 
transverse deflection can be derived and is given by [3,4], 
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The results of the transverse deflection obtained from the 
DKT element and the rectangular element are shown in 
Figs. 2-3, respectively.  Both of the finite element models 
have the same number of unknowns.  Figure 4 shows the 
predicted transverse deflections along the x-direction 
obtained from both the element types as compared to the 
exact solution.  The predicted maximum transverse 
deflections including their percentage errors from the 
exact solution are also shown in Table 1.  The table 
shows the DKT element performs very well and provides 
good solution accuracy as compared to that of the 
standard four-node rectangular element. 
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Figure 1. Problem statement of a simply supported 
square plate subjected to a uniformly 
distributed load. 
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Figure 2.  Predicted plate transverse deflection using the 

three-node DKT elements.   
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Figure 3.  Predicted plate transverse deflection using the 

four-node rectangular elements.  
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Figure 4. Comparative transverse deflections from the 
two finite element models with the exact 
solution along x-direction for simply supported 
square plate under uniform distributed load.  

 
Table 1. Comparison of the predicted maximum 

transverse deflections and percentage errors 
for simply supported square plate under 
uniform distributed load. 

 

 

 

 

 

 

4.2 Simply supported square plate under 
concentrated load 

 The problem statement of the second problem is 
similar to the previous one except that the uniform 
distributed load is replaced by the concentrated load F = 
1,200 N at the center of the plate.  The exact solution for 
transverse deflection can be derived in form of the 
infinite series as [3,4],  
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where a is a plate length. 

 The comparison of the transverse deflection along 
the x-direction obtained from the DKT and the standard 
rectangular element with the exact solution is shown in     
Fig. 5.  The predicted maximum transverse deflections 
including their percentage errors from the exact solution 
are also shown in Table 2.  The table shows the DKT 
element can provide good solution accuracy as compared 
to the standard four-node rectangular element. 
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Figure 5. Comparative transverse deflections from the 

two finite element models with the exact 
solution along x-direction for simply supported 
square plate under concentrated load.  

 
Table 2. Comparison of the predicted maximum 

transverse deflections and percentage errors 
for simply supported square plate under 
concentrated load. 

 

 

 

 

 

 

 

 wmax (m) |error (%)| 

Exact -0.012187 - 

DKT element -0.012170 0.13 

Rectangular element -0.012218 0.25 

 wmax (m) |error (%)| 

Exact -0.008701 - 

DKT element -0.008708 0.08 

Rectangular element -0.008734 0.38 



 

 

4.3 Rectangular plate with two opposite edges simply 
supported and one clamp supported under 
uniform distributed load 

 A rectangular plate with the dimensions of 1×1.5 m 
and a thickness of 0.01 m, subjected to a uniform 
distributed load of 10,000 N/m2, is shown in Fig. 6.  The 
plate is assumed to have the modulus of elasticity of 
1.092×1011 N/m2 and the Poisson’s ratio of 0.3.  The 
edges along x = 0 and 1 have the simply supported 
boundary condition, while the edge along y = 0 is 
clamped and the edge along y = 1.5 is free.  The 
predicted plate deflections obtained from the DKT 
element and the standard rectangular element are shown 
in Figs. 7-8.  The predicted maximum transverse 
deflections including their percentage errors from the 
exact solution [3,4] are shown in Table 3. 
 

 

 

 

 

 

 

 
Figure 6. Problem statement of a rectangular plate with 

two opposite edges simply supported and one 
clamp supported under uniform distributed 
load. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Predicted plate deformation by using three-

node DKT elements. 
 
 

 

 

 

 

 

 

Figure 8. Predicted plate deformation by using four-node 
rectangular elements. 

Table 3. Comparison of the predicted maximum 
transverse deflections and percentage errors 
for a rectangular plate with two opposite 
edges simply supported and one clamp 
supported under uniform distributed load. 

 

 

 

 

 

5.  Conclusion 

 Comparative performance between the discrete 
Kirchhoff triangular (DKT) element and the standard 
rectangular element for plate bending analysis was 
presented.  The finite element equations for both the DKT 
element and the standard rectangular element were 
derived by using the method of weighted residuals.  All 
finite element matrices were derived in closed-form and 
the corresponding computer programs were developed.  
Three plate bending examples with exact solutions were 
used to evaluate the performance of the DKT element. 
The results show that the DKT element performs very 
well as compared to the standard four-node rectangular 
element. 
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