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Abstract 
This paper presents the numerical simulation of turbulent flow driven by natural convection in a complex domain. The 
domain is a square enclosure and there are five partitions installed inside the enclosure. The finite volume method with 
a structural cartesian grid is used in this work. Thus the domain is divided into several simple sub-domains resulting in 
an easy-to-use of a structured grid. Then all the sub-domains are solved simultaneously by using a parallel computing 
in which one sub-domain is assigned to one process and the exchange of necessary information among relevant 
processes are performed by message-passing interface via the MPI instructions. Moreover, in each sub-domain, the 
multigrid algorithm is used to accelerate rate of convergence. The performance test of parallel computing is 
investigated by comparing the computing time in the following three cases: parallel computing with one process per 
one compute node, parallel computing with all processes running in one compute node, and a sequential computing. In 
case of turbulence modeling and numerical validation, this work uses the k-ω-SST turbulence model of Menter [1] and  
the numerical results are validated with the experimental data of Ampofo [2].

Introduction 
 With the advanced computer hardware today, the 
numerical methods are commonly used in fluid flow and 
heat transfer calculations on personal computer (PC). In 
some cases, however, the PC may take a long time in 
computation and in another cases the main memory of 
one PC may not be enough to launch. The use of 
supercomputer is unaffordable in general, with regard to 
the cost. One alternative viable way is to construct a 
relatively inexpensive PC cluster, the PCs connected 
together via the Ethernet switch, for computing in parallel 
approach. In this case, each PC formed the cluster is 
called the compute node. The basic idea of parallel 
computing is to perform the tasks concurrently in 
expecting that the memory usage and computing time are 
reduced proportionally to the number of compute nodes 
used. As well-known that one PC can run several  
programs simultaneously by means of multitasking 
operation. There are two types of multitasking: thread- 
and process-based multitasking. The process is the 
program that is executed by a processor and the thread is 
a path of execution within a process. Each process can 
contain multiple threads in which at least one thread 
contains in the process as the main thread. This paper 
concerns only in process-based multitasking. As just 
stated that one processor (compute node) can run several 
programs or processes at a time. Therefore this work will 
assign one set of data to one process. This is a parallel 
processing or data parallelization, that is, multiple 
processes or multiple sets of data are executed in parallel. 

 

 
Figure 1. The schemetric diagram of the considered 
domain (the experimental set-up of Ampofo [2]) 

 
 The objective of the present work is to divide the 
complex domain into several rectangular sub-domains and 
then to take the advantage of using parallel computing 
which is well-known to be suited for the multiblock 
technique. Moreover, the multigrid method, well-known 
as the accelerative algorithm for iterative solvers, is 
adopted here to accelerate the rate of convergence. The 
selected problem is the natural convection inside a square 
enclosure with installed partitions, which is shown in Fig. 
1. The detail of experimental set-up can be found in 
Ampofo [1]. 
 



Governing Equations 
 The Reynolds-averaged Navier-Stokes equation and 
the time-averaged energy equation are considered in the 
present work. For a steady incompressible flow, the 
equations governing fluid flow  and heat transfer can be 
expressed as follows: 
 
the mean continuity equation: 
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and the mean energy equation represented by mean 
temperature equation: 
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This averaging process gives rise to the two unknowns: 
the Reynolds stress i ju uρ ′ ′  and the turbulent heat flux 

iu Tρ ′ ′ . Based on the Boussinesq approximation, the 
Reynolds stress can be expressed as 
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and with the standard gradient diffusion hypothesis, the 
turbulent heat flux is in the form 
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where ig  represent to xg  and yg  in which xg  is omitted 

and 29.81 /yg g  m s= − = −  which is the gravitational 
acceleration, and for ideal gas 1/ refTβ = . 
 The Reynolds stress based on the Boussinesq 
approximation is related to the velocity gradient, the 
turbulent kinetic energy and the eddy viscosity. The eddy 
viscosity remains the unknown quantity, which needs 
further modeling. This leads to the eddy viscosity model. 
It is modeled relating to the turbulent quantities in which 
these turbulent quantities possess their own transport 
equations. There are several zero, one, two or more 
equations turbulence models proposed in the literature. In 
this work, the SST-k-ω variance of two-equation 
turbulence model is used. The detail is described in the 
following. 
 
The eddy viscosity is defined as 
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normal distance from the wall to the first discrete point.  
The eddy viscosity is related to the turbulent kinetic 
energy k and its specific dissipation rate ω which are 
respectively written in PDE form as 
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The turbulent production term Pk and the buoyancy 
production term GB are respectively defied in two-
dimensions as 
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The blending function Bf appeared in the ω-equation is 
defined as 4

f 1B  tanh(arg )=  
where 
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The empirical constants of the model, Cω , α , kσ  and 

ωσ , are obtained by blending the model constants of the 
original k ω−  model in boundary layers, denoted as 1φ , 
with those of the transformed high-Re-number k ε−  
model ( 2φ ) in free-shear layers. The resulting relation 
becomes 
 

1 2(1 )f fB Bφ φ φ= + − ; 
 
the model constants of the original k ω−  model are 

1 0.075α = 1 0.85kσ = , 1 0.5ωσ = , and 1 0.533Cω = ; 
 



and the model constants of the transformed k ε−  model 
are 

2 0.0828α = , 2 1.0kσ = , 2 0.856ωσ = , and 2 0.44Cω = . 
 
Numerical Method 
 The governing equations are in the form of partial 
differential equation and can be written in general 
transport form as 
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To solve this equation with the use of computer 
simulation, it is necessary to convert the partial 
differential equation form into an algebraic form of 
equation. This is the so-called discretization process. This 
paper uses the finite volume formulation to discretize the 
governing equations based on a structural non-staggered 
cartesian grid system. The convection and diffusion terms 
are respectively interpolated with typical first order 
upwind and second order central schemes. The 
discretized equations written in the standard finite volume 
formulation become 
 

, , ,
P P n n

n E W N S
a a Sφφ φ

=

= +∑ . 

 
The resulting algebraic equations are solved with a 
segregated manner in which all algebraic equations are 
solved separately. Therefore, the SIMPLE algorithm is 
adopted in this work to couple the continuity and 
momentum equations. Then each algebraic equation is 
solved iteratively by an alternating line-by-line TDMA. 
To stabilize the computation, the source terms in 
turbulent kinetic energy and its specific dissipation rate 
equations are divided into two group: normally be 
negative (N) and normally be positive (P) groups. The 
modified algebraic equation can be written as 
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Then the negative source terms are lumped in the 
diagonal coefficient. However, there are some terms that 
can be both negative and positive during the iteration 
process. Those terms are Gk and (∂k/∂xj)(∂ω/∂xj). 
Therefore, they will be examined in each iteration 
whether being positive or negative. Unless being positive, 
they are lumped in the diagonal coefficient. In 
acceleration of convergence rate, the multigrid algorithm 
is adopted by solving the system of algebraic equations 
on hierarchic grids. To do this, one is to solve each 
equation on hierarchic grids by sequence of equations, 
and the other is to solve all equations by sequent level of 
hierarchic grids. The latter approach is well-known to 
have more efficient than the former approach; therefore, 
the latter one is used in this paper and the algorithm will 
be described in the next section. 
 

Multigrid Methodoly 
 In the multigrid method the computation is carried out 
on a number of grids set with different grid size h, the 
finest grid is denoted by h and each level of the coarse 
grids is represented by multiplying an integer number, 
i.e., 2h, 3h, 4h and so on. The exact solution for any 
variable hφ on grid level h satisfies the following 
equation: 
 

h h hA Sφ = . 
Unless the approximate solution satisfies the exact 
solution and boundary conditions, the equation will 
contain a residual hR  given by 
 

h h h hA S Rφ = −% % , 
 
where the approximate solution is denoted by the 
superscript ’~’. The exact and approximate solutions are 
related each other with h h heφ φ= +% , where he  is the 
correction of an approximate solution. By subtracting the 
approximate equation from the exact equation, the result 
becomes 
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To determine the correction heφ , the approximate 

solutions hφ%  on grid level h  is transferred onto the 
coarser grid level 2h: 
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this is the restriction process, where the super script ‘^’ 
denotes the information calculated from the restricted 
solutions. Moving the known quantities to the right-hand 
side, the equation is reduced to 
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where 
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The term 2ˆ hC  is kept constant during the iteration. It 
should be noted that 2ˆ hS and 2hS%  were identical at the 
first iteration, as the iterations have progressed, they will 
differ each other resulting in driving a coarse grid 
iteration process. The restricted residual and the different 
in source terms behave like the source-driving term. Thus 
the coarse grid equation is the source-driven procedure. 
Subsequently, having a required few iterations at coarser 
grid finished,  the correction is calculated using the 
following formula: 
 

2 2 2 2 2h h h h h h
new old new he Iφ φ φ φ φ= − = −% % % % . 

 



Hence the correction is transferred back to the finest grid, 
this is the prolongation process. Then the finest grid 
solution is corrected there using the prolonged correction 
as follows: 
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 So far, the process have finished for one step, i.e., one 
multigrid V-cycle is complete (the process pattern looks 
like the letter ‘V’). This version of multigrid method is 
the full approximation storage (FAS) scheme in which 
the approximate solution at fine grid is also restricted 
onto the coarser grid, not only the residual like the 
correction storage (CS) scheme. The restriction and 
prolongation are done by bi-linear interpolation for the 
field variables, but the residuals are restricted by area 
weight-averaged. In regard to the turbulent quantities 
correction, having to prolong onto the coarser grid, some 
mathematical operation have to be modified to avoid 
being negative value in the correction step. As a result, 
the correction step for the turbulent quantities is modified 
as 
 

2
2| |h h h h
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where α is an appropriate small value ranging from 0 to 1 
and φ stands for k and ω. 
 
Domain Decomposition Technique 
 It is well-known that the construction of a structured 
grid suffers from the complexity of the considering 
domain, i.e., it does not appropriate to generate a single 
structured grid to cover all region of the complex domain. 
Even though, it is possible to do, however, this manner 
gives rise to the complexity in code programming. An 
efficient way to remedy this problem is a so-called block-
structured grid. The block-structured grid is generated by 
breaking the complex domain into several simple sub-
domains, hence, a single structured grid can be generated 
in each sub-domain. Therefore, this strategy can resolve a 
complex geometry into simple geometries. The block-
structured grid system, moreover, can be broadly 
classified into two categories: patched grid (see Fig. 2(a)) 
and overlapping gird (see Fig. 2(b)). The patched grid is 
the two grid blocks joined together at a common grid line 
without extended over each other. With overlapping grid, 
however, the grid block can extend to cover on each 
other. An advantage of the overlapping grid is its more 
flexibility in grid generation that can be more easily fitted 
into the complex geometry than the patched grid. On the 
other hand, in transferring information between adjacent 
block, the patched grid is more easily done. The patched 
grid is used in this paper. In addition, not only the block-
structured grid can resolve the problem of complex 
geometry, but also it provides a natural manner for 
computing each block simultaneously in terms of parallel 
computation as will be discribed in the next section. 
 

 
(a) 

 

 
(b) 

Figure 2. The schematic diagram of (a) a patched grid and 
(b) an overlapping grid. 

 
 The generation of the block-structured grid system is 
not a difficult task, but its challenging task is how to 
transfer the information between the adjacent sub-
domains (thereafter called block). Each block will contain 
a separated special cells, a number of control volumes, 
for storing the information transferred from the adjacent 
blocks. If the considering block joining with the other 
blocks, it will detect whether which boundaries being 
joined with the neighboring blocks and then generates the 
special cells for those boundaries. Once the special cells 
have somehow obtained the necessary information from 
the neighboring blocks, then the direct interpolation is 
conduced for the special cells and the cells aligning along 
the boundary belonging to the special cells. However, the 
direct interpolation is done only for the field variables. 
For the gradient terms, e.g. ∂p/∂xi, they are calculated 
directly from the field variable after conducting the direct 
interpolation. Besides the field variables, u, v, p, p′, T, k, 
ω are interpolated, it is also necessary to interpolate 
diagonal coefficients, aP, of the momentum equations in 
order to fulfill the coefficients of the pressure correction 
equation 
 
Parallelization Technique 
 A usual way in calculation procedure of the block-
structured grid is to calculate each block in sequence. 
During any block is being calculated, the other blocks is 
idle and waiting for their task queue. This undesired 
waste time can be revised by using a parallel computing 
in which all blocks are calculated simultaneously by 
using a number of processes. In this paper, the processor 
is the same meaning as the compute node and the process 
is any program running on the processor. The main task 
in parallel computing is a partitioning data among 
processes. Partitioning a single structured grid is 
straightforward for data parallelization applications. For a 
composite grid, there are two ways to partition: one is to 
apply the single grid partitioning technique to one sub-
grid at a time and the other is to distribute different sub-
grids to different processors. The first approach is applied 
for serial blocks with parallel data of each block while the 
second one is applied for parallel blocks. Therefore, the 
composite grid exhibits both coarse-grain parallelism, i.e. 
computing on different sub-grids in parallel, and fine-



grain parallelism at the mesh point, i.e., parallel 
computing within one sub-grid [3]. The coarse-grain 
parallelism undertakes an advantage of minimal program 
changes by assigning each entire sub-grid to each 
processor. Only the grid interconnection is affected. The 
coarse-grain parallelism is usually referred to as the 
domain decomposition technique and is a popular 
approach in computational fluid dynamics [3]. In contrast 
to the coarse-grain parallelism, the fine-grain parallelism 
is exploited by distributing one sub-grid at a time to all 
processors, usually by assigning an index set of a region 
of the grids to the respective processes. This latter 
approach is a similar manner to the parallel single grid 
but involves several sets of single grids and it is called 
the grid partitioning technique. The fine-grain 
parallelism, moreover, requires two sets of data: one for 
the local array of data and the other for the global array of 
data. The data of one block is copied from the global data 
to the corresponding local data, and the computation is 
performed using the local data in a similar manner to a 
single block grid. The updated local data is then returned 
to the global data. Block connectivity is achieved using 
the global data. After the global data of one block is 
updated, the other blocks are treated in a sequential 
manner as shown in Fig. 3 (a) where the solid line of 
arrows represents the direct exchange of global data 
between any adjacent blocks and the broken line of 
arrows denotes the exchange/transfer of data by 
employing the message-passing interface. Unlike the 
fine-grain parallelism, the coarse-grain parallelism, where 
the global data is omitted, requires only the local data and 
the block computation is performed simultaneously in a 
parallelization manner as depicted in Fig. 3(b). As shown, 
in Fig. 3 (b), the processes themselves contain the local 
data and additional 4 extra cells of data of the interface 
block. These cells may be called the ghost cells. The 
ghost cells will be allocated if and only if a block 
belonging to them interfaces with other blocks. In 
addition, the dimension of the ghost cells is the same as 
those of the corresponding faces of neighboring blocks. 

 
(a) 

 

 
(b) 

Figure 3. The schematic diagram of (a) coarse-grain 
parallelism and (b) fine-grain parallelism 

 
 The present paper exploits the coarse-grain 
parallelism or the domain decomposition. The MPI 
library is adopted in this work for porting a sequential 
code to a parallel code. The MPI library identifies each 
process with a unique number, called rank. MPI uses the 
rank to manage a transferring of data among processes: 
which process receives data from which process and 
which process send data to which process. It is a good 
idea to specify the ID number of block with the rank. The 
block data are firstly created in the data file containing all 
necessary information, e.g., block ID number, boundary 
conditions, ID number of which block the current block 
joins with. As the program has executed, the MPI is 
started and specifies the ID number of each process with 
the rank, and then all processes read the same input file 
and find the block ID in the file that matches its rank. If 
the matching ID has found, then each process reads the 
necessary information and allocates memory. Then the 
calculation processes proceed until finishing. Finally, all 
processes write computed results into the separated data 
files. 
 

 
Figure 4. Geometry of considered domain, boundary 
conditions and domain decomposition (not to scale) 

 

 
Figure 5. Temperature distribution along the partitions 
surface (not to scale) 

 

 
Figure 6. Grid layout for the present calculation 



 

 
Figure 7. Plot of temperature contour 

 
Figure 8. Plot of velocity contour 

 
Problem Descrition and Calculation Detail  
 The domain considered in this work is depicted in 
Fig. 4. , that is a square enclosure having five partitions 
installed inside one. The size of enclosure is 750 mm 
wide and 750 mm high. The left vertical wall is heated at 
temperature TH = 50 0C and the right one is cooled at TC = 
10 0C resulting in Ra = 1.58 x 109. The temperature 
distribution along the upper and lower horizontal walls 
are linearly interpolated between the left and right walls 
temperature, since the upper and lower walls are made 
from the highly conductive material in the experiment. 
The partitions inside the enclosure are arranged in 
vertically symmetric manner, where the consecutive 
partitions are 125 mm apart. Each partition is 3 mm thick 
and 150 mm long. With this partition size, therefore, the 
temperature at the end of partition can be assumed as that 
of the surrounding air, as depicted in Fig. 5, and then the 
temperature distribution along the upper and lower 
surfaces are interpolated between the temperature of the 
connecting hot enclosure wall and the end of partition, 
this practice results in the assumption that the partitions 
are highly thermal conductivity. As shown in Fig. 4, the 
domain is decomposed into 12 sub-domains and each 
domain (block) is denoted by an integer number ranging 
from 1 to 12. Fig. 6 shows the grid layout for this 
calculation. The grid points for blocks 1-6 are 64x64 grid 
points and blocks 7-12 are 160x80 grid points. Grid 
distribution is generated from an algebraic cubic 
polynomial function in which the spacing of the first grid 
point up to the two wall in each direction can be 

controlled. As a result, high grid density is enforced near 
the walls and at the interfaces as shown in Fig. 6. 
 
Results and Discussion 
 The computed contour lines of temperature and 
resultant velocity, see Fig. 7 and 8 respectively, are fairly 
smooth across the block interface, this shows the 
capability and availability of the multiblock technique 
used. The computed horizontal velocity profiles along 
centrally consecutive two partitions, see Fig. 9, are 
validated with the experimental data. The results are in 
fairly good agreement with the experiment. The 
discrepancy might be arisen from the difference in 
partitions arrangement between this work and the 
experiment, because the information in partitions 
arrangement of the experiment is not clear in which this 
work arranges the partitions in vertically symmetric 
m a n n e r . 

 

 
Figure 9. Vertical velocity profiles along central of 
consecutive partitions at different heights. Symbols stand 
f o r  e x p e r i m e n t a l  d a t a . 

 

 
Figure 10. The multigrid efficiency in terms of the 
number of iterations 
 
Fig. 6 shows the multigrid efficiency in reducing the 
number of iterations. In parallel performance test, only 
5,000 computing steps are performed due to very long 
computation time at converged state of using one 



compute node. In Fig. 11, the residual reduction line, 
solide line, of parallel computing with one compute node 
is almost coincident with the one, broken line, of 
sequential computing (non-parallel), this implies that the 
time used in exchange necessary information across 
processes is minor loss compared to the computation 
t i m e .  

 

 
Figure 11. Plot of residual reductions versus computing 
times of parallel computing and sequential computing 

 

 
Figure 12. Plot of residual reductions versus computing 
times of parallel computing by varying the number of 
c o m p u t e  n o d e s . 

 
The parameter of interest for parallel computing is the 
speed up, Sp=T1/Tn, where T1 is the time taken by one 
compute node in computing entire sub-domains or entire 
blocks and Tn is the time taken by n compute nodes in 
computing entire blocks as well. In Fig. 12, it is found 
that the speed up is increase with increasing the number 
of compute nodes, but it drops when reaching 10 and 11 
compute nodes, why? This situstion can be discribed as 
follows: the time lost in sending/recieving message 
across compute nodes through network connection is 
increase with increasing the number of compute nodes; 
for using a small number of compute node, the time taken 
in exchaging information does not dominate; for using 9, 
10 and 11 compute nodes, the time taken in computing 

the remaining blocks left after matching one-by-one 
between the number of blocks and compute nodes is 
nearly the same amount because the compute nodes that 
complete the asigned computation steps will wait for the 
incomplete compute nodes; and in case of using 6, 7, 8, 9, 
10 and 11 compute nodes,  there is the same amount of 
additional task added in one arbitary compute node for all 
cases (for example, using 6 compute nodes, two tasks 
will assigned for each compute node and using 10 
compute nodes, there will be 2 compute nodes 
performing a task and one addition task). As shown in 
Fig. 12, it is found that the maximum speedup is 
a p p r o x i m a t e l y  1 2 .  

 
Conclusions 
 The numerical simultion of turbulent natural 
convection in the enclosure with installed five partitions 
is perfomed by using parallel computing procedure. The 
multiblock techinqure is used to resolve the problem of 
domain complexity. It is found that the multiblock 
technique is well appropriate to the parallel computing. 
The convergence rate is improved by using the multigrid 
algorithm. The computed velocity profiles are in fairly 
agreement with the experimental data. The contour lines 
of velocity and temperature are pass smoothly through 
the block interface, this shows the availabilty and 
capabilty of the multiblock technique used. In test of 
parallel computing, it is found that the time used in 
exchanging data across process is very small compared to 
the computation time. In this paper, the maximum speed 
up gaind is 12.  
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