
การประชุมวิชาการเครือขายวิศวกรรมเครื่องกลแหงประเทศไทยครั้งที ่21
17-19 ตุลาคม 2549 จังหวัดชลบุรี

Multigrid Implementation in Computation of
Turbulent Natural Convection in an Enclosure with Installed Partitions

Kiattisak Ngiamsoongnirn1*, Varangrat Juntasaro2, Putchong Utthayopas3 and Ekachai Juntasaro4

1,4School of Mechanical Engineering, Institute of Engineering, Suranaree University of Technology,
Nakhon Ratchasima, Thailand

2Department of Mechanical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
3Department of Computer Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand

Email: kiatt2000@hotmail.com*

Abstract
This paper presents the numerical simulation of turbulent flow driven by natural convection in a complex domain. The
domain is a square enclosure and there are five partitions installed inside the enclosure. The finite volume method with
a structural cartesian grid is used in this work. Thus the domain is divided into several simple sub-domains resulting in
an easy-to-use of a structured grid. Then all the sub-domains are solved simultaneously by using a parallel computing
in which one sub-domain is assigned to one process and the exchange of necessary information among relevant
processes are performed by message-passing interface via the MPI instructions. Moreover, in each sub-domain, the
multigrid algorithm is used to accelerate rate of convergence. The performance test of parallel computing is
investigated by comparing the computing time in the following three cases: parallel computing with one process per
one compute node, parallel computing with all processes running in one compute node, and a sequential computing. In
case of turbulence modeling and numerical validation, this work uses the k-ω-SST turbulence model of Menter [1] and
the numerical results are validated with the experimental data of Ampofo [2].

Introduction
 With the advanced computer hardware today, the
numerical methods are commonly used in fluid flow and
heat transfer calculations on personal computer (PC). In
some cases, however, the PC may take a long time in
computation and in another cases the main memory of
one PC may not be enough to launch. The use of
supercomputer is unaffordable in general, with regard to
the cost. One alternative viable way is to construct a
relatively inexpensive PC cluster, the PCs connected
together via the Ethernet switch, for computing in parallel
approach. In this case, each PC formed the cluster is
called the compute node. The basic idea of parallel
computing is to perform the tasks concurrently in
expecting that the memory usage and computing time are
reduced proportionally to the number of compute nodes
used. As well-known that one PC can run several
programs simultaneously by means of multitasking
operation. There are two types of multitasking: thread-
and process-based multitasking. The process is the
program that is executed by a processor and the thread is
a path of execution within a process. Each process can
contain multiple threads in which at least one thread
contains in the process as the main thread. This paper
concerns only in process-based multitasking. As just
stated that one processor (compute node) can run several
programs or processes at a time. Therefore this work will
assign one set of data to one process. This is a parallel
processing or data parallelization, that is, multiple
processes or multiple sets of data are executed in parallel.

Figure 1. The schemetric diagram of the considered
domain (the experimental set-up of Ampofo [2])

 The objective of the present work is to divide the
complex domain into several rectangular sub-domains and
then to take the advantage of using parallel computing
which is well-known to be suited for the multiblock
technique. Moreover, the multigrid method, well-known
as the accelerative algorithm for iterative solvers, is
adopted here to accelerate the rate of convergence. The
selected problem is the natural convection inside a square
enclosure with installed partitions, which is shown in Fig.
1. The detail of experimental set-up can be found in
Ampofo [1].

Governing Equations
 The Reynolds-averaged Navier-Stokes equation and
the time-averaged energy equation are considered in the
present work. For a steady incompressible flow, the
equations governing fluid flow and heat transfer can be
expressed as follows:

the mean continuity equation:

() 0j
j

u
x

ρ∂
=

∂
;

the mean momentum equation:

()

()

ji
j i i j

j i j j i

i ref

uupu u u u
x x x x x

 g T T

ρ μ ρ

ρ β

⎡ ⎤⎛ ⎞∂∂∂ ∂ ∂ ′ ′= − + + −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
− −

;

and the mean energy equation represented by mean
temperature equation:

()
Prj j

j j j

Tu T u T
x x x

μρ ρ
⎡ ⎤∂ ∂ ∂ ′ ′= −⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
.

This averaging process gives rise to the two unknowns:
the Reynolds stress i ju uρ ′ ′ and the turbulent heat flux

iu Tρ ′ ′ . Based on the Boussinesq approximation, the
Reynolds stress can be expressed as

2
3

j i
i j t ij

i j

u u
u u k

x x
ρ μ ρ δ

⎛ ⎞∂ ∂
′ ′ = − + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

,

and with the standard gradient diffusion hypothesis, the
turbulent heat flux is in the form

t
j

T j

Tu T
x

μ
ρ

σ
∂′ =
∂

,

where ig represent to xg and yg in which xg is omitted

and 29.81 /yg g m s= − = − which is the gravitational
acceleration, and for ideal gas 1/ refTβ = .
 The Reynolds stress based on the Boussinesq
approximation is related to the velocity gradient, the
turbulent kinetic energy and the eddy viscosity. The eddy
viscosity remains the unknown quantity, which needs
further modeling. This leads to the eddy viscosity model.
It is modeled relating to the turbulent quantities in which
these turbulent quantities possess their own transport
equations. There are several zero, one, two or more
equations turbulence models proposed in the literature. In
this work, the SST-k-ω variance of two-equation
turbulence model is used. The detail is described in the
following.

The eddy viscosity is defined as

min ,t
k ak

b
μ ρ

ω
⎛ ⎞

= ⎜ ⎟⎜ ⎟Ω⎝ ⎠
,

where
2

v u
x y

⎛ ⎞∂ ∂
Ω = −⎜ ⎟∂ ∂⎝ ⎠

, 0.31a = , 2
2tanh(arg)b = ,

2 * 2

2 500arg max ,
n n

k
d d

μ
α ω ρ ω
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

, α*=0.09; dn is the nearest

normal distance from the wall to the first discrete point.
The eddy viscosity is related to the turbulent kinetic
energy k and its specific dissipation rate ω which are
respectively written in PDE form as

() *()j k t k B
j j j

ku k P G k
x x x

ρ μ σ μ ρα ω
⎡ ⎤∂ ∂ ∂

= + + + −⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

() 3

2

() ()

2(1)

j t k B
j j j t

f
j j

C
u P C G

x x x

k B
x x

ω
ω

ω

ωρ ω μ σ μ
μ

ρσ ωραω
ω

⎡ ⎤∂ ∂ ∂
= + + +⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
∂ ∂

− + −
∂ ∂

The turbulent production term Pk and the buoyancy
production term GB are respectively defied in two-
dimensions as

2 22

2 2k t
u v v uP
x y x y

μ
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

,

t
B

T

g TG
y

μ β
σ

∂
= −

∂
.

The blending function Bf appeared in the ω-equation is
defined as 4

f 1B tanh(arg)=
where

2
1 2 2

4500arg min max , ,
n n k n

kk
d d CD d

ω

ω

ρσμ
α ω ρ ω∗

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 and

2022max ,10k
j j

kCD
x x

ω
ω

ρσ ω
ω

−
⎛ ⎞∂ ∂

= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
.

The empirical constants of the model, Cω , α , kσ and

ωσ , are obtained by blending the model constants of the
original k ω− model in boundary layers, denoted as 1φ ,
with those of the transformed high-Re-number k ε−
model (2φ) in free-shear layers. The resulting relation
becomes

1 2(1)f fB Bφ φ φ= + − ;

the model constants of the original k ω− model are

1 0.075α = 1 0.85kσ = , 1 0.5ωσ = , and 1 0.533Cω = ;

and the model constants of the transformed k ε− model
are

2 0.0828α = , 2 1.0kσ = , 2 0.856ωσ = , and 2 0.44Cω = .

Numerical Method
 The governing equations are in the form of partial
differential equation and can be written in general
transport form as

()j
j j j

u S
x x x

φ φφρ φ
⎛ ⎞∂ ∂ ∂

= Γ +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

To solve this equation with the use of computer
simulation, it is necessary to convert the partial
differential equation form into an algebraic form of
equation. This is the so-called discretization process. This
paper uses the finite volume formulation to discretize the
governing equations based on a structural non-staggered
cartesian grid system. The convection and diffusion terms
are respectively interpolated with typical first order
upwind and second order central schemes. The
discretized equations written in the standard finite volume
formulation become

, , ,
P P n n

n E W N S
a a Sφφ φ

=

= +∑ .

The resulting algebraic equations are solved with a
segregated manner in which all algebraic equations are
solved separately. Therefore, the SIMPLE algorithm is
adopted in this work to couple the continuity and
momentum equations. Then each algebraic equation is
solved iteratively by an alternating line-by-line TDMA.
To stabilize the computation, the source terms in
turbulent kinetic energy and its specific dissipation rate
equations are divided into two group: normally be
negative (N) and normally be positive (P) groups. The
modified algebraic equation can be written as

, , ,

P
P P n n P N

n E W N S P

a a S Sφ φ φφ φ
φ=

⎛ ⎞
= + + ⎜ ⎟

⎝ ⎠
∑ .

Then the negative source terms are lumped in the
diagonal coefficient. However, there are some terms that
can be both negative and positive during the iteration
process. Those terms are Gk and (∂k/∂xj)(∂ω/∂xj).
Therefore, they will be examined in each iteration
whether being positive or negative. Unless being positive,
they are lumped in the diagonal coefficient. In
acceleration of convergence rate, the multigrid algorithm
is adopted by solving the system of algebraic equations
on hierarchic grids. To do this, one is to solve each
equation on hierarchic grids by sequence of equations,
and the other is to solve all equations by sequent level of
hierarchic grids. The latter approach is well-known to
have more efficient than the former approach; therefore,
the latter one is used in this paper and the algorithm will
be described in the next section.

Multigrid Methodoly
 In the multigrid method the computation is carried out
on a number of grids set with different grid size h, the
finest grid is denoted by h and each level of the coarse
grids is represented by multiplying an integer number,
i.e., 2h, 3h, 4h and so on. The exact solution for any
variable hφ on grid level h satisfies the following
equation:

h h hA Sφ = .
Unless the approximate solution satisfies the exact
solution and boundary conditions, the equation will
contain a residual hR given by

h h h hA S Rφ = −% % ,

where the approximate solution is denoted by the
superscript ’~’. The exact and approximate solutions are
related each other with h h heφ φ= +% , where he is the
correction of an approximate solution. By subtracting the
approximate equation from the exact equation, the result
becomes

()h h h h h h h hA e A S S Rφφ φ+ − = − +% % % .

To determine the correction heφ , the approximate

solutions hφ% on grid level h is transferred onto the
coarser grid level 2h:

2 2 2 2 2 2 2 2ˆ ˆ()h h h h h h h h h
h hA I e A S S I Rφφ φ+ − = − +% % ,

this is the restriction process, where the super script ‘^’
denotes the information calculated from the restricted
solutions. Moving the known quantities to the right-hand
side, the equation is reduced to

2 2 2ˆ()h h hA C Sφ = +% % ,

where

2 2 2h h h h
hI eφφ φ= +% % and 2 2 2 2 2ˆ ˆ ˆ()h h h h h h h

h hC A I S I Rφ= − +% .

The term 2ˆ hC is kept constant during the iteration. It
should be noted that 2ˆ hS and 2hS% were identical at the
first iteration, as the iterations have progressed, they will
differ each other resulting in driving a coarse grid
iteration process. The restricted residual and the different
in source terms behave like the source-driving term. Thus
the coarse grid equation is the source-driven procedure.
Subsequently, having a required few iterations at coarser
grid finished, the correction is calculated using the
following formula:

2 2 2 2 2h h h h h h
new old new he Iφ φ φ φ φ= − = −% % % % .

Hence the correction is transferred back to the finest grid,
this is the prolongation process. Then the finest grid
solution is corrected there using the prolonged correction
as follows:

2
2

h h h h
new old hI eφφ φ= +% % .

 So far, the process have finished for one step, i.e., one
multigrid V-cycle is complete (the process pattern looks
like the letter ‘V’). This version of multigrid method is
the full approximation storage (FAS) scheme in which
the approximate solution at fine grid is also restricted
onto the coarser grid, not only the residual like the
correction storage (CS) scheme. The restriction and
prolongation are done by bi-linear interpolation for the
field variables, but the residuals are restricted by area
weight-averaged. In regard to the turbulent quantities
correction, having to prolong onto the coarser grid, some
mathematical operation have to be modified to avoid
being negative value in the correction step. As a result,
the correction step for the turbulent quantities is modified
as

2
2| |h h h h

new old hI eφφ φ α= +% % ,

where α is an appropriate small value ranging from 0 to 1
and φ stands for k and ω.

Domain Decomposition Technique
 It is well-known that the construction of a structured
grid suffers from the complexity of the considering
domain, i.e., it does not appropriate to generate a single
structured grid to cover all region of the complex domain.
Even though, it is possible to do, however, this manner
gives rise to the complexity in code programming. An
efficient way to remedy this problem is a so-called block-
structured grid. The block-structured grid is generated by
breaking the complex domain into several simple sub-
domains, hence, a single structured grid can be generated
in each sub-domain. Therefore, this strategy can resolve a
complex geometry into simple geometries. The block-
structured grid system, moreover, can be broadly
classified into two categories: patched grid (see Fig. 2(a))
and overlapping gird (see Fig. 2(b)). The patched grid is
the two grid blocks joined together at a common grid line
without extended over each other. With overlapping grid,
however, the grid block can extend to cover on each
other. An advantage of the overlapping grid is its more
flexibility in grid generation that can be more easily fitted
into the complex geometry than the patched grid. On the
other hand, in transferring information between adjacent
block, the patched grid is more easily done. The patched
grid is used in this paper. In addition, not only the block-
structured grid can resolve the problem of complex
geometry, but also it provides a natural manner for
computing each block simultaneously in terms of parallel
computation as will be discribed in the next section.

(a)

(b)

Figure 2. The schematic diagram of (a) a patched grid and
(b) an overlapping grid.

 The generation of the block-structured grid system is
not a difficult task, but its challenging task is how to
transfer the information between the adjacent sub-
domains (thereafter called block). Each block will contain
a separated special cells, a number of control volumes,
for storing the information transferred from the adjacent
blocks. If the considering block joining with the other
blocks, it will detect whether which boundaries being
joined with the neighboring blocks and then generates the
special cells for those boundaries. Once the special cells
have somehow obtained the necessary information from
the neighboring blocks, then the direct interpolation is
conduced for the special cells and the cells aligning along
the boundary belonging to the special cells. However, the
direct interpolation is done only for the field variables.
For the gradient terms, e.g. ∂p/∂xi, they are calculated
directly from the field variable after conducting the direct
interpolation. Besides the field variables, u, v, p, p′, T, k,
ω are interpolated, it is also necessary to interpolate
diagonal coefficients, aP, of the momentum equations in
order to fulfill the coefficients of the pressure correction
equation

Parallelization Technique
 A usual way in calculation procedure of the block-
structured grid is to calculate each block in sequence.
During any block is being calculated, the other blocks is
idle and waiting for their task queue. This undesired
waste time can be revised by using a parallel computing
in which all blocks are calculated simultaneously by
using a number of processes. In this paper, the processor
is the same meaning as the compute node and the process
is any program running on the processor. The main task
in parallel computing is a partitioning data among
processes. Partitioning a single structured grid is
straightforward for data parallelization applications. For a
composite grid, there are two ways to partition: one is to
apply the single grid partitioning technique to one sub-
grid at a time and the other is to distribute different sub-
grids to different processors. The first approach is applied
for serial blocks with parallel data of each block while the
second one is applied for parallel blocks. Therefore, the
composite grid exhibits both coarse-grain parallelism, i.e.
computing on different sub-grids in parallel, and fine-

grain parallelism at the mesh point, i.e., parallel
computing within one sub-grid [3]. The coarse-grain
parallelism undertakes an advantage of minimal program
changes by assigning each entire sub-grid to each
processor. Only the grid interconnection is affected. The
coarse-grain parallelism is usually referred to as the
domain decomposition technique and is a popular
approach in computational fluid dynamics [3]. In contrast
to the coarse-grain parallelism, the fine-grain parallelism
is exploited by distributing one sub-grid at a time to all
processors, usually by assigning an index set of a region
of the grids to the respective processes. This latter
approach is a similar manner to the parallel single grid
but involves several sets of single grids and it is called
the grid partitioning technique. The fine-grain
parallelism, moreover, requires two sets of data: one for
the local array of data and the other for the global array of
data. The data of one block is copied from the global data
to the corresponding local data, and the computation is
performed using the local data in a similar manner to a
single block grid. The updated local data is then returned
to the global data. Block connectivity is achieved using
the global data. After the global data of one block is
updated, the other blocks are treated in a sequential
manner as shown in Fig. 3 (a) where the solid line of
arrows represents the direct exchange of global data
between any adjacent blocks and the broken line of
arrows denotes the exchange/transfer of data by
employing the message-passing interface. Unlike the
fine-grain parallelism, the coarse-grain parallelism, where
the global data is omitted, requires only the local data and
the block computation is performed simultaneously in a
parallelization manner as depicted in Fig. 3(b). As shown,
in Fig. 3 (b), the processes themselves contain the local
data and additional 4 extra cells of data of the interface
block. These cells may be called the ghost cells. The
ghost cells will be allocated if and only if a block
belonging to them interfaces with other blocks. In
addition, the dimension of the ghost cells is the same as
those of the corresponding faces of neighboring blocks.

(a)

(b)

Figure 3. The schematic diagram of (a) coarse-grain
parallelism and (b) fine-grain parallelism

 The present paper exploits the coarse-grain
parallelism or the domain decomposition. The MPI
library is adopted in this work for porting a sequential
code to a parallel code. The MPI library identifies each
process with a unique number, called rank. MPI uses the
rank to manage a transferring of data among processes:
which process receives data from which process and
which process send data to which process. It is a good
idea to specify the ID number of block with the rank. The
block data are firstly created in the data file containing all
necessary information, e.g., block ID number, boundary
conditions, ID number of which block the current block
joins with. As the program has executed, the MPI is
started and specifies the ID number of each process with
the rank, and then all processes read the same input file
and find the block ID in the file that matches its rank. If
the matching ID has found, then each process reads the
necessary information and allocates memory. Then the
calculation processes proceed until finishing. Finally, all
processes write computed results into the separated data
files.

Figure 4. Geometry of considered domain, boundary
conditions and domain decomposition (not to scale)

Figure 5. Temperature distribution along the partitions
surface (not to scale)

Figure 6. Grid layout for the present calculation

Figure 7. Plot of temperature contour

Figure 8. Plot of velocity contour

Problem Descrition and Calculation Detail
 The domain considered in this work is depicted in
Fig. 4. , that is a square enclosure having five partitions
installed inside one. The size of enclosure is 750 mm
wide and 750 mm high. The left vertical wall is heated at
temperature TH = 50 0C and the right one is cooled at TC =
10 0C resulting in Ra = 1.58 x 109. The temperature
distribution along the upper and lower horizontal walls
are linearly interpolated between the left and right walls
temperature, since the upper and lower walls are made
from the highly conductive material in the experiment.
The partitions inside the enclosure are arranged in
vertically symmetric manner, where the consecutive
partitions are 125 mm apart. Each partition is 3 mm thick
and 150 mm long. With this partition size, therefore, the
temperature at the end of partition can be assumed as that
of the surrounding air, as depicted in Fig. 5, and then the
temperature distribution along the upper and lower
surfaces are interpolated between the temperature of the
connecting hot enclosure wall and the end of partition,
this practice results in the assumption that the partitions
are highly thermal conductivity. As shown in Fig. 4, the
domain is decomposed into 12 sub-domains and each
domain (block) is denoted by an integer number ranging
from 1 to 12. Fig. 6 shows the grid layout for this
calculation. The grid points for blocks 1-6 are 64x64 grid
points and blocks 7-12 are 160x80 grid points. Grid
distribution is generated from an algebraic cubic
polynomial function in which the spacing of the first grid
point up to the two wall in each direction can be

controlled. As a result, high grid density is enforced near
the walls and at the interfaces as shown in Fig. 6.

Results and Discussion
 The computed contour lines of temperature and
resultant velocity, see Fig. 7 and 8 respectively, are fairly
smooth across the block interface, this shows the
capability and availability of the multiblock technique
used. The computed horizontal velocity profiles along
centrally consecutive two partitions, see Fig. 9, are
validated with the experimental data. The results are in
fairly good agreement with the experiment. The
discrepancy might be arisen from the difference in
partitions arrangement between this work and the
experiment, because the information in partitions
arrangement of the experiment is not clear in which this
work arranges the partitions in vertically symmetric
m a n n e r .

Figure 9. Vertical velocity profiles along central of
consecutive partitions at different heights. Symbols stand
f o r e x p e r i m e n t a l d a t a .

Figure 10. The multigrid efficiency in terms of the
number of iterations

Fig. 6 shows the multigrid efficiency in reducing the
number of iterations. In parallel performance test, only
5,000 computing steps are performed due to very long
computation time at converged state of using one

compute node. In Fig. 11, the residual reduction line,
solide line, of parallel computing with one compute node
is almost coincident with the one, broken line, of
sequential computing (non-parallel), this implies that the
time used in exchange necessary information across
processes is minor loss compared to the computation
t i m e .

Figure 11. Plot of residual reductions versus computing
times of parallel computing and sequential computing

Figure 12. Plot of residual reductions versus computing
times of parallel computing by varying the number of
c o m p u t e n o d e s .

The parameter of interest for parallel computing is the
speed up, Sp=T1/Tn, where T1 is the time taken by one
compute node in computing entire sub-domains or entire
blocks and Tn is the time taken by n compute nodes in
computing entire blocks as well. In Fig. 12, it is found
that the speed up is increase with increasing the number
of compute nodes, but it drops when reaching 10 and 11
compute nodes, why? This situstion can be discribed as
follows: the time lost in sending/recieving message
across compute nodes through network connection is
increase with increasing the number of compute nodes;
for using a small number of compute node, the time taken
in exchaging information does not dominate; for using 9,
10 and 11 compute nodes, the time taken in computing

the remaining blocks left after matching one-by-one
between the number of blocks and compute nodes is
nearly the same amount because the compute nodes that
complete the asigned computation steps will wait for the
incomplete compute nodes; and in case of using 6, 7, 8, 9,
10 and 11 compute nodes, there is the same amount of
additional task added in one arbitary compute node for all
cases (for example, using 6 compute nodes, two tasks
will assigned for each compute node and using 10
compute nodes, there will be 2 compute nodes
performing a task and one addition task). As shown in
Fig. 12, it is found that the maximum speedup is
a p p r o x i m a t e l y 1 2 .

Conclusions
 The numerical simultion of turbulent natural
convection in the enclosure with installed five partitions
is perfomed by using parallel computing procedure. The
multiblock techinqure is used to resolve the problem of
domain complexity. It is found that the multiblock
technique is well appropriate to the parallel computing.
The convergence rate is improved by using the multigrid
algorithm. The computed velocity profiles are in fairly
agreement with the experimental data. The contour lines
of velocity and temperature are pass smoothly through
the block interface, this shows the availabilty and
capabilty of the multiblock technique used. In test of
parallel computing, it is found that the time used in
exchanging data across process is very small compared to
the computation time. In this paper, the maximum speed
up gaind is 12.

Acknowledgments
This work is part of the Thai National Grid Project
funded by SIPA, Ministry of Information and
Communication Technology, Thailand, and this work is
performed on the 16-nodes CAMETA cluster, located at
SUT (Thailand), which is financially supported from
NECTEC (Thailand). These supports are greatly
a p p r e c i a t e d .

Refferences
[1] Menter, F.R., 1994. Two-Equations Eddy-Viscosity
 Turbulence Models for Engineering Applications.
 AIAA Journal, Vol 32, No 8, pp. 1598-1605.

[2] Ampofo, F., 2005. Turbulent natural convection of air
 in a non-partitioned or partitioned cavity with
 differentially heated vertical and conducting
 horizontal walls. Experimental Thermal and Fluid
 Science, Vol 29, No 2, pp. 137-157.

[3] J. Rantakokko, 2000. Partitioning Strategies for
 Structured Multiblock Grids. Parallel Computing,
 26, pp. 161-168.

