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Abstract

Topology optimisation is well recognised as one of
the most effective and powerful tools in the field of
multidisciplinary and structural optimisation. It can be
applied to the conceptual design of a wide variety of
practical engineering applications. It is also renowned as
a tool for dealing with the synthesis of compliance
mechanisms. Traditionally, the design problem is to find a
structural topology under predefined loads while
optimising nonlinear design objective with the mass or
volume being constrained. The disadvantage of this
approach is that it always needs the further design step to
ensure structural safety requirements. This paper presents
an alternative topology design approach in which the
design problem is the classical mass minimisation with
stress constraints. The use of numerical strategy ground
element filtering to suppress topology checkerboards is
detailed and illustrated. The optimum results show that
the GEF method can suppress topology checkerboard.
The resulting topologies are illustrated and compared to
the optimal topology obtained from solving the
compliance minimisation problem.
Keywords: Ground Element Filtering, Topology
Optimisation, Mass Minimisation, Stress

1. Introduction

Topology optimisation is a numerical tool
implemented in the conceptual design stage. Structural
topological design is an optimisation problem that is set
to find the best possible layout of a structure such that
optimising the design objective value whilst meeting
predefined constraints. A lot of research work has been
made towards this design technology while a number of
design approaches have been well-established e.g. Solid
Isotropic Material with Penalisation (SIMP) [1] and
homogenisation method [2, 3]. Topological design is
traditionally carried out by employing finite element
analysis and numerical optimisation techniques. For a
microstructure-based approach, with a predefined
structural design domain being assigned, a structure is
discretised into a number of finite elements called ground
elements. Topology design variables are element density

distribution which implies that locations at where element
density is nearly zero form voices in the structure
whereas the others represent material existence. Note that
the term element density here defines a particular
parameter that can affect structural merit and result in
reasonable topologies of a structure. It could be element
thickness for a 2D case.

The classical topology optimisation problem is posed
to minimise structural compliance (equivalent to
maximising global structural stiffness) whereas structural
mass is constrained. The other objective functions often
used are natural frequencies and buckling factors. A few
attempts have been made to apply the classical mass
minimisation with stress constraints but it seemed to be
unsuccessful due to some numerical difficulties [4] e.g.
the problem of checkerboard formation. It has been
illustrated that, for the finite element types such as a 4-
node membrane, a topology with checkerboards is
artificially stiffer. Such a problem can be alleviated by
applying the higher order finite element formulation.
However, there remain some drawbacks i.e. it is
computationally expensive when using a great number of
ground elements. Therefore, the use of the 4-node finite
element formulation with an efficient numerical scheme
for checkerboard prevention is the more popular and
efficient approach. A number of numerical schemes have
been proposed to suppress the checkerboards e.g.
sensitivity filtering technique [1] and checkerboard
constraint [5]. Another simple but effective numerical
strategy for checkerboard-free design is the ground
element filtering technique (GEF), which is presented in
references [6, 7]. It should be noted that the authors have
applied this approach to deal with some particular
applications several times and named it differently from
GEF.

This paper presents the use of the numerical strategy
GEF to find a structural topology where the problem is
set to be mass minimisation with stress constrains. The
numerical technique is detailed, illustrated and
implemented to solve the 2D structural topology design
problem. The optimum topologies are illustrated and
compared to that obtained from solving the classic
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compliance minimisation problem. It is shown that the
GEF method can suppress topology checkerboard. The
technique enables an unconventional topology design
problem to be solved.

2. Topology Optimisation

A generic constrained optimisation problem is posed
to find the solution of design variables that optimise the
value of design objective while fulfilling predefined
constraints. For topological optimisation, since it is
operated on the early stage of a design process, some of
the structural constrains can be ignored and the design
problem can be simplified as:

min : /(p) M
Subject to

m(p) = r.m(1)
0<p<p<1

where p is the vector of topological design variables
having lower and upper bounds as p; and 1 respectively

Alp) is an objective function

m(p) is structural mass

and r is the ratio of structural mass to the maximum
mass.

The design problem can be thought of as the plan of
using limited material to have an optimum value of
design merit. The traditional objective functions are
structural compliance, eigenfrequency and buckling
factor [4]. Figure 1 displays a particular topology design
process of a 2D plate. Note that, for 2D design, element
density is represented by element thickness. Apart from
checkerboard, some inevitable numerical difficulties
involving the design are: local optimum resulting in less
effective design, and many optimum results of one design
domain with various element mesh resolutions. Another
drawback of this design approach is that shape and sizing
optimisation are always needed to perform ensuring that
the structure fulfils all safety requirements.
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Figure 1 Topological design process

3. Ground Element Filtering

GEF is a simple numerical technique exploiting
interpolation for approximating the values of finite
element densities from the known density distribution on
another domain. The grid of design variables can be
achieved by discretising the structural domain with the
resolution different from the ground element resolution.
Figure 2 shows a rectangular design domain being
meshed into » ground finite elements whereas the design
variables have m elements. Let r,” be the position vectors
of the m centre points of the design variable grids (plus
sign) and r;” be the position vectors of the centre points
of the n ground elements (‘0 sign). By using radial-basis
function interpolation, the densities at the centre points of
the ground finite elements,p, can be computed from the
given densities at the design variables’ centre points,
p““* by the relation

p:CAflpGEF :TpGEF (2)

where

C=[¢;l,., =L/ @@, x)N]=[1(d)]
A =[a;],., =L@ e)N]=[1(d;)]
£(d,)=d(r,.x,)

nd

a
d(r,,r;)=/(r,-r) (r,-r,)-

4+ |0|0|0|0[0|0|0
0|p|0|0|0|0|0
9/0/0|0/0|0|0
.£|0|0[0]0]0|0
0/0/0[0|0|0|0
Tla|lo O
o |0 O
Ol | 0|0
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Figure 2 ground element and design variable grids

The resolution of the design variable grid must be
lower than that of the ground finite element grid. The
process can be seen as the ground element being filtered
by the densities values on the design variable elements,
thus, it is termed ground element filtering. For more
details, see references [6] and [7]. Figure 3 demonstrates
the mapping of densities from the GEF domain to the
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densities at the finite element centre points. It is shown
that the actual structural configuration (on the finite
element domain) is controlled by the density values from
the GEF design domain. Due to the less resolution on the
GEF domain, the checkerboard and/or one-node
connected hinge patterns which appear on the GEF
domain are automatically prevented on the ground finite
element domain. This means that if the optimisation
process is carried out on the GEF domain, checkerboards
are allowed to occur but they will not appear on the actual
topology, which is on the finite element domain.

Figure 3 mapping from GEF domain to finite
element domain

Implementing the GEF technique to the topology
design problem (1) leads to a new design problem with
the use of p“** instead of p. The lower and upper bounds
from the problem (1) are altered to be

pmin _ T# pO (3)

pmax — T#l

where T denotes the pseudo-inverse of T.

The gradient of a function f with respect to p“** can
be expressed as [7]

v/

T
o =TTV (4)

The procedure of the Optimality Criteria Method
(OCM) with the use of GEF is presented in [7] and [8].
The advantage of the GEF technique is that it does not
need sensitivity filtering technique or any additional
constraint to deal with checkerboards as required by the
classical approaches. The evaluation of function gradients
can be carried out by using (4).

4. Design Test-Case

The numerical experiment is set up so as to
demonstrate the effectiveness of the presented numerical
technique on a structural mass minimisation problem
with stress constraints. The mass minimisation is said to
be unconventional for topological design as it is difficult
to deal with. A few attempts in assigning the constrained
mass minimisation to topology optimisation have been
made but it seemed to be unsuccessful due to the

checkerboard problem. For the implementation of GEF in
dealing with checkerboards in the mass minimisation
problem with stress constraints, the problem can be
expressed as

minm(p“*") (5)

GEF

p
subject to

0. (0" ) <o,

T#pe, min _ pmin < pGEF < pmax _ T#pe, max

where p® ™" is the vector of the lower limits of
ground elements’ thickness
p” "™ is the vector of the upper limits of ground

elements’ thickness

o, are the maximum shear stress at the centre point
of the e™ elements

o, is the allowable stress.

The stress constraints are corresponding to the
maximum shear stress failure theory while the safety
factor is set to be 2.

Figure 4 displays the design domain of a cantilever
plate under the applied load. The plate has the dimensions
of L =2 m and H = 1 m. The structure is made of the
material with 200x10° N/m? Young modulus and 0.3
Poisson’s ratio. The yield stress is set to be 200x10° N/m?
for simplicity. The structure is meshed to have 20x10
elements while the GEF design variables have 16x8
elements. The ground element and GEF grids are
depicted in Figure 5. The value of the upper bound of
plate thickness, p” ", is set to be 0.06, 0.04 and 0.03 m.
Several maximum element thickness values are assigned
in order to examine the effect of plate thickness on the
resulting structural topologies.
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Figure 4 Design domain of a cantilever plate
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Figure 5 Ground element and design variable grids

5. Optimum Results

Sequential quadratic programming is used to solve
the mass minimisation problem (5). The optimum
topology obtained from solving the design problem
without using GEF, where the maximum plate thickness
is o™ =0.06 m, is displayed in Figure 6. It is found that
the resulting topology is full of checkerboards. The
optimum results in the cases of the maximum thickness
7" being 0.04 and 0.03 m are illustrated in Figures 7
and 8 respectively. It can be seen that the optimum
solutions are not reached.

Optirmurn topology without the use of GEF at t=60mm

Figure 6 Optimum solution without the use of GEF at
p"™ =0.06 m

Optirmurn topology without the use of GEF at t=40mm

Figure 7 Optimum solution without the use of GEF at
p""™=0.04 m

Optimum topology without the use of GEF at t=30mm

Figure 8 Optimum solution without the use of GEF at
pe.max — 0'03 m

The optimum topology obtained from solving the
design test-case with the use of GEF, where the
maximum plate thickness is o™ = 0.06 m, is displayed
in Figure 9. The resulting topology is said to be
checkerboard-free. The optimum results in the cases of
maximum thickness being 0.04 and 0.03 m are illustrated
in Figures 10 and 11 respectively. It is shown that the
resulting topologies with various maximum plate
thickness values being assigned are slightly different. The
optimum topology from solving the compliance
minimisation (1) by using the GEF technique with 70%
mass reduction and the OCM method [7] is displayed in
Figure 12. The topology is similar to those displayed in
Figures 9 10 and 11. However, the plate thickness is still
unknown, which is the disadvantage of this approach
compared to solving the problem (5).

Optirnum topology with the use of GEF at t=60mm

€,max

Figure 9 Optimum solution with the use of GEF at p
=0.06 m
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Cptimum topology with the use of GEF at t=40mm

Figure 10 Optimum solution without the use of GEF at
P =0.04 m

Optirnum topology with the use of GEF at t=30mm

Figure 11 Optimum solution without the use of GEF at
P =0.03m

Optimurn topology wia compliance minimisation

Figure 12 Optimum solution of compliance minimisation

6. Conclusions and discussion

The mathematical problem of topology optimisation
is introduced. The numerical technique named ground
element filtering is detailed and illustrated. The technique
is implemented on the mass minimisation with stress
constraints where design variables represent a structural
topology. The optimum results show that the GEF
approach is effective and powerful for mass minimisation
topological design problem. It can be used to suppress the
undesirable checkerboards on a structural topology. The

introduction of the GEF technique also enables an

unconventional topological design problem being
accomplished.
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