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Abstract

The free vibration analysis of cantilevered plates and beams 

with thickness 5 mm. The lengthwise was fixed 500 mm and the 

breadthwise was varied with the geometric ratios of 0.25 up to 20 

were analysed by means of the finite element analysis. The 

analysis was used to calculate the first 40 natural frequencies 

and mode shapes. The mode shape was used to identify the 

behaviour of cantilevered beam-like or plate-like. The transition 

curve from cantilevered plate-like to cantilevered beam-like 

behaviour was found in polynomial form. 
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Material
Density

(kg/m3)

Young’s

modulus 

(x109 N/m2)

Poisson’s

ratio

Carbon steel 7850 210 0.29 

Cast iron steel 7150 179 0.22 

Stainless steel 8030 193 0.27 

Aluminum Alloy 2700 70 0.33 

 3 

 2 

 2 

Density

(kg/m3)

Young’s

modulus (x 

109 N/m2)

Poisson’s

ratio

7850 210 0.29 

8030 210 0.29 

7150 210 0.29 
Density

2700 210 0.29 

7850 210 0.29 

7850 193 0.29 

7850 179 0.29 Young’s

modulus 7850 70 0.29 

7850 210 0.29 

7850 210 0.33 

7850 210 0.27 Poisson’s

ratio 7850 210 0.22 
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Mode
Natural

Frequency (Hz) 
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(5,0) 1441.9 5 
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(7,0) 2670 7 

(8,0) 3421.2 8 

(9,0) 4262 9 

(10,0) 5191.3 10 

 3  Least – 

Square Method  MATLAB 

 4 

67.47754.18501.38 2 rrf  (4) 

 4 

 4 

 13 

 13 

 (Carbon Steel) 

 13 

(Cantilevered Plate) 

 (Cantilevered Beam-like behaviour) 

 (Cantilevered Plate-like behaviour) 

 Least – Square Method 

 (0,0)  (10,0) 

 0.25  10 

 4 

 4 

4.1

 5, 6  7 

 8030, 7150  2700 kg/m3

43.47252.18357.37 2 rrf  (5) 

51.50038.19483.39 2 rrf  (6) 

43.81435.31681.64 2 rrf  (7) 

14

The 20th Conference of Mechanical Engineering Network of Thailand 

Suranaree University of Technology 

ME NETT 20th

AMM044

182 AMM044

18-20 October 2006 , Mandarin Golden Valley Hotel & Resort Khao Yai , Nakhon Ratchasima

School of Mechanical  Engineering , Suranaree University of Technology



 14

4.2

 8, 9  10 

 193, 179  70 GPa 

03.4589.17744.36 2 rrf  (8) 

08.44131.17109.35 2 rrf  (9) 

87.27516.10794.21 2 rrf     (10) 

 15 

 15 

4.3

 11, 12  13 

 0.33, 0.27  0.22 

31.48263.18709.38 2 rrf     (11) 

30.45289.15677.40 2 rrf     (12) 

71.44793.15467.40 2 rrf     (13) 

 16 

 16

5.

 Least – Square Method 

(Cantilevered Beam-like behaviour) 

(Cantilevered Plate-like behaviour)  13 

 4 

 3 

 (Young’s modulus) 

 (Density)  (Poisson’s ratio) 

The 20th Conference of Mechanical Engineering Network of Thailand 

Suranaree University of Technology 

ME NETT 20th

AMM044

183 AMM044

18-20 October 2006 , Mandarin Golden Valley Hotel & Resort Khao Yai , Nakhon Ratchasima

School of Mechanical  Engineering , Suranaree University of Technology



 Response Surface Method  
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English Letters 
A   =  (m2)

a   =  (m) 

b   =  (m)

D   = flexural rigidity of the plate 

E   =  (N/m2)

f   =  (rad/sec) 

h   =  (m) 

I   = moment of inertia of a plane area (m4)

r   = 

t   =  (m) 

Greeks
n   =  (rad/sec) 
2  =  (rad) 

   =  (kg/m3)

  = a constant depending on the mode 

  = 
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