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Abstract 

Mostly, physical systems are nonlinear and their dynamics do 
not lead to straightforward system analysis procedures. The 
modeling of mechanical systems requires accurate knowledge 
and understanding of their dynamics.    However, the procedures 
to identify and analyze nonlinear systems are often restricted by 
limited and inaccurate system knowledge.  From these reasons, 
the problem can be addressed by considering new methodology 
that is not totally dependent on precise system knowledge in 
order to obtain accurate system dynamical model.  This research 
is proposed to apply Fourier Series Neural Network (FSNN) that 
has universal function approximation properties to learn 
nonlinearity in mechanical systems.  Utilization of the network 
promises to provide auxiliary tool for identifying and modeling 
nonlinear dynamical effects consisting in mechanical systems.  
Performance based on simulation for the FSNN compensation 
adaptive controller was conducted on a rotational wheel system 
together with brake-pad device for generating stick-slip frictional 
effects. The FSNN was employed as a nonlinear dynamics 
approximation controller in the control strategy that identifies 
friction embedded in the system.  The weights adaptation and 
stability of control system were confirmed using Lyapunov 
analysis.  The tracking error was proved to be bounded and PD 
controller is necessary to ensure the overall stability. 
Keywords:  Fourier series neural network, Adaptive controller, 
Function approximation, System identification, System modeling 
 
1. Introduction 

Adaptive controllers are implemented to learn and adapt to 
unknown constant parameters from known system dynamic 
function.  The well-developed adaptive controllers represent high 
performance controllers for system control [1].  The accuracy of 

controlled system improves along with task performing because 
of the adaptation mechanism.  The controllers also give 
consistent performance in situation of environment variations [2].  
The adaptive computed-torque method is modified from 
approximated computed torque controller by applying adaptive 
updated rule for parameter estimation  [3].  The PD controller is 
implemented with adaptive controller to ensure the stability of the 
overall system in case there existed mismatch between 
approximated and exact dynamics equation.   

Recently, there has been increasing interest in the use of 
intelligent control technique such as fuzzy logic and neural 
networks.  Generally, the controls rely on learning the input-
output-behavior of the plant to be controlled.  Neural networks 
have been applied extensively to identify and control of nonlinear 
dynamic systems.  The convergence of neural networks is never 
assured because of the nonlinear activation function presence 
within the networks [4].  The networks also have another 
limitation that required initial weights to be properly chosen to 
achieve an appropriate convergence. However, the neural 
network is still a convenient approach to address complex and 
nonlinear dynamic systems. 

A multilayered neural network was proposed for identify a 
nonlinear dynamic plant with the presence of disturbance [5].  
Due to neural network ability to model nonlinear dynamical 
systems, it has been investigated for various control applications 
[6].  Various neural network architectures have been developed 
and applied for dynamic system identification.  Recurrent 
networks with different feedback have been widely applied in the 
area of nonlinear system modeling.  A hybrid neural network was 
implemented with a conventional two-layered feedforward neural 
network to identify viscous torque and asperity contact torque in 
wet friction component in transmission system [7].  The neural 



 

network control scheme was successfully capturing friction 
characteristic of the friction component as a function of time.  

Orthogonal activation function neural networks have an 
advantage over conventional neural networks.  One unique 
characteristic is that they demonstrate no local minima. The 
absence of local minima assures the convergence of the training 
that is the limitation of conventional neural networks.  For 
orthogonal activation functions, the auto correlation matrix is a 
diagonal matrix with all equal eigenvalues. These equal 
eigenvalues result in an extraordinary characteristic that they 
have hyperspheroid error contour projection surface in n-
dimensional network weight space. The symmetry of error 
contour enhances the possibility for small number of training 
cycles [8].   

An orthonormal activation function neural network such as the 
Fourier series neural network (FSNN) has been used for dynamic 
system identifier [8,9,10,11].  A Single-Input-Single-Output (SISO) 
FSNN was developed and analyzed their coefficients of sin and 
cos terms, including identification of system transfer function and 
describing functions.  The FSNN was compared with other 
orthonormal activation function neural networks and showed good 
performance in work by Shukla and Paul [8].  The FSNN stability 
is guaranteed if the learning rate does not exceed the maximum-
learning rate.  This work showed that the Fourier series neural 
network is another approach to identify nonlinear dynamic 
systems.  The network also provides flexibility to implement to 
dynamic systems without a prior knowledge of such systems. 
 
2. Statement of the problem 

An accurate system model is very important for precision and 
performance in such engineering application.  The modeling of 
mechanical systems requires accurate knowledge and 
understanding of their dynamics.    However, the procedures to 
identify and analyze nonlinear systems are often restricted by 
limited and inaccurate system knowledge.  Frequently, the 
nonlinearity embedding in physical systems enhances complexity 
and difficulties for the analysis.  This kind of systems can be 
found in many control applications such as robot, vehicles and 
motor-load systems.  Control of these physical systems is crucial 
for any tasks that the systems involve.  For example, the robot 
will be useless if the controller cannot command the robot arm to 
follow such desired trajectory.  In addition, it can damage product 
items that the robot is assigned to handle. These systems have 
complex nonlinear dynamics that make accurate and robust 
control difficult.  From these reasons, control of physical systems 
with nonlinear dynamics requires well-developed adaptive 

controllers. The objective of this research is to understand, verify 
and demonstrate the applicability of Fourier Series Neural 
Network (FSNN) nonlinear adaptive control.  Based on this study, 
the research will consider the learning characteristics of FSNN.   

The proposed control architecture consists of a PD controller 
and FSNN for fast learning and guarantee convergent of Fourier 
series neural network characteristics.  The control scheme has a 
benefit from FSNN in enhancing the performance of a 
conventional PD control strategy for uncertainties compensation.  
Examples of uncertainties can be imperfection of system dynamic 
model, load fluctuation and friction. 

The FSNN receives desired trajectory signal and error signal 
as inputs for learning system dynamics by adjusting its state 
weights inside the network. The weight adaptation objective is to 
minimize the feedback error from the controlled system. While the 
FSNN compensator is trained, it generates sending out signal as 
an additional control force onto the system.  Eventually, the 
FSNN will gain knowledgeable of system dynamics and then 
provides an appropriate force signal for the system. At this point, 
the FSNN applies the force signal that compensates for imperfect 
knowledge of the controlled system dynamic model and any other 
uncertainties that occur during the operation.  

Thus, the advantages of utilizing FSNN compensator within 
the control architecture are more accurate performance and more 
flexibility in order to control different mechanical systems from the 
same control platform.  In addition, the controller does not need 
either a priori or near perfect knowledgeable of the controlled 
system in order to achieve an accurate trajectory output because 
the FSNN compensator within the control architecture has an 
ability to compensate for the imperfection of the system model 
and uncertainties. 

 
3. Fourier series neural network 

Fourier series expansion contains an orthogonal set which 
has a fixed structure depending on the number of variables and 
based frequencies.  The multiple Fourier series is comparable to 
a feedforward neural network with a single hidden layer as shown 
in Figure 1.  This particular neural network is a Fourier series 
neural network (FSNN).  Inputs fed into the FSNN at the input 
nodes are variables of the function.  They will be arranged to be 
harmonic functions, sin and cos terms, within harmonic neurons.  
The harmonic terms are multiplied to generate an orthogonal set 
which are compatible with multiple Fourier series expansion 
terms.  Each orthogonal term is then multiplied by a state weight.  
Finally all product terms will be combined together with a bias 
weight to generate the network output.  



 

The state weights and the bias weight, which are well 
matched with the coefficient of each Fourier series term, are 
determined utilizing the Delta Rule (DR) method.  The DR is a 
product-learning rule for a feedforward, single-layer, structured 
neural network using gradient descent to achieve training or 
learning by error correction.  The network’s weights are adjusted 
in the direction of minimizing the difference between the desired 
value and actual output from the network. 

Suppose the best fit Fourier series that represents a function 
is 
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where h(.) is a complex harmonic activation function with W’s as 
the state weights.  

The equation approximates a multiple Fourier series if 
weights Wn nm1. . are trained to approach the coefficients of 
Fourier series. The FSNN model with real sine and cosine 
activation functions can be expressed as 
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where vector Ωn nm1. .  = (n1ω01, …, nmω01) and the ‘•’ between 
Ωn nm1. .  and X denotes the dot product operation of the two 
vectors. 

The multiple Fourier series for a function can be reformed 
with the coefficients given by 
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Let the FSNN learning error El is the difference between the 

desired output yd and actual output from FSNN model 
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The second multiple contains higher order terms, which can 
be neglected if Ni’s (i = 1,.., m) are large. Thus the learning error 
can be approximated by 

∑∑
= =

•Ω−=
1

1

111

0
..

0
.... )cos()[(

N

n
nn

N

n

c
nnnnl XWAE m

m

m

mm   

                  )]sin()( ...... 111 XWB mmm nn
S

nnnn •Ω−+            

(6) 
From Delta rule, the state weight is updated as  
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where Wx = state weight for a particular orthogonal term and  

η   = learning rate 
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Figure 1.  FSNN architecture (2 inputs) 
 
4. Model equation and control scheme 

A rotational wheel system together with brake-pad device for 
generating stick-slip frictional effects using in this work is shown 
in Figure 2.  The system itself is not complicated; however, it 
includes comparable nonlinearities in the real mechanical system 
as shown in Figure 3.  We assume that there is no disturbance 
torque applied onto the system. The system dynamical equation 
can be written as follow 
                          )(qFqBqJ &&&& ++=τ                         
(8) 
where        J    is inertia term 

          B   is damping coefficient 
   )(qF &  is frictional effect 

 



 

 
 
Figure 2.  Rotational wheel system with brake-pad device 

 
 

Figure 3.  Stick-slip friction with stribeck effect 

The Fourier series neural network (FSNN) controller was 
implemented to control rotational wheel system model in order to 
verify its performance.  Fourier series neural network (FSNN) 
controller diagram is shown in Figure 3.  In this controller, we 
proposed to use a filtered-error-based approach, employing the 
FSNN to approximate unknown nonlinear functions in the system 
dynamics, there by overcoming some limitations of the adaptive 
control.  Instead of requiring knowledge of the system dynamics, 
as needed in both regression adaptive control and the robust 
control, the FSNN is responsible to adapt its weights on-line to 
learn the unknown system dynamics.  The controller may pledge 
to provide a model-free learning controller for a class of nonlinear 
adaptive control systems.   

The control input for the FSNN controller can be written as 

        rKxW v
T += )(ˆ φτ                               

(9), 

where  )(ˆ xW Tφ  is control input from the FSNN. 
   rKv   is  PD control input 
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Figure 4.  FSNN controller diagram 
 
5. Stability analysis 

Dynamical equation of a rotational wheel system together 
with stick-slip frictional effects can be generally written as 
Equation 8.  Assign error term (e) as difference between desired 
and actual angular displacement 

qqe d −=                                            

(10) 

eer λ+= &                                            
(11) 

eer &&&& λ+=                                           
(12) 
where r is filter error term 
substitutes Equation 10 into Equation 8 we obtain 

         τ=+−+− )()()( qFeqBeqJ dd &&&&&&&                 

(13) 
substitutes Equations 11 and 12 into Equation 13 we obtain 

τλλ =++−++− )()()( qFerqBerqJ dd &&&&&&           (14) 

rearrange the above equation in filter error expression. 

)( eqJBrrJ d &&&& λ++−=          

τλ −+++ )()( qFeqB d &&                                 

(15) 
Finally, we obtain dynamic equation of the rotational wheel 

system express in filter error form as follows: 
             τ−+−= )(qfBrrJ &&                          

(16) 
where 

)()()()( qFeqBeqJqf dd &&&&&& ++++= λλ            (17)             

The FSNN approximates nonlinear function (Equation 17) 
with ideal weights can be written as 

 εφ += )()( qWqf T &&                             (18), 

where   ε   is net functional reconstruction error. 
Substitutes Equations 9 and 18 into Equation 16, we obtain 

system dynamic equation as followed: 

      εφ ++−= )(qWBrrJ T && rKqW v
T −− )(ˆ &φ         (19) 



 

      εφ +++−= )(~)( qWrBKrJ T
v &&                          

(20) 

where  WWW ˆ~ −=                  (21) 
Assign Lyapunov function as: 

 { }WFWJrrL TT ~~ 1
2
1

2
1 −+=                          

(22) 
Differentiates the Lyapunov function, we obtain 

            { }WFWrJrrJrL TTT &&&& ~~ 1
2
1 −++=                (23) 

We first assume that there is no net functional reconstruction 
error.  Substitutes dynamic equation in filter error form (Equation 
20) into Equation 23 

[ ])(~)( qWrBKrL T
v

T && φ++−=         

{ }WFWrJr TT && ~~ 1
2
1 −++                (24) 

( ){ }TT
v

T rqWFWrKrL )(~~ 1 &&& φ++−= −                (25) 

if we design term  

   TrqFW )(~
&& φ−=                 (26) 

which causes the second term to be zero. 
We differentiate Equation 21 to obtain 

  WWWW &&&& ˆˆ~ −=−=                   (27) 
thus 

   TrqFW )(ˆ &
& φ=                              

(28) 
which is Fourier series neural network weights adaptation 
algorithm 

Differentiate of Lyapunov function in Equation 25 can be 
shorten to 

   rKrL v
T−=&                  (29) 

Since 0>L  and 0≤L&  resulting in r and W~  are 
bounded. The system is stable in the sense of Lyapunov (SISL). 

From Barbalet’s lemma, if L&  is uniformly continuous, then 
0→L&  as  ∞→t . 

L&  is uniformly continuous only if  L&  is continuous and L&& is 
bounded. 

Differentiate Equation 29 we obtain 
      rKrL v

T &&& 2−=                               

(30) 
From system dynamic equation (Equation 20), we can 

rearrange it into the following form 

        ( ))(~)(1 qWrBKJr T
v && φ++−= −                     (31) 

We know that r, W~ , 1)( −qM , B  and Kv  are bounded.  So 
r&  showing in Equation 35 is bounded.  

From these reasons, L&&  is bounded, L&  is continuous so 

L& is uniformly continuous.  0→L&  as  ∞→t .  0)( →tr  
as ∞→t  

If there is no net functional reconstruction error, the error will 
go to zero as time goes to infinity. 

In real application, there still exists net reconstruction error 
from the network. Then, the system dynamic Equation 20 can be 
rewritten as 

       εφ +++−= )(~)( qWrBKrJ T
v &&                       

(32) Assign Lyapunov function as 

{ }WFWJrrL TT ~~ 1
2
1

2
1 −+=                (33) 

differentiates 

          { }WFWrJrrJrL TTT &&&& ~~ 1
2
1 −++=                       

(34) 
substitutes Equation 32 into Equation 34 

[ ]εφ +++−= )(~)( qWrBKrL T
v

T &&      

            { }WFWrJr TT && ~~ 1
2
1 −++                                  

(35) 

( ){ } εφ TTT
v

T rrqWFWrKrL +++−= − )(~~ 1 &&&              (36) 

if we design term  

         TrqFW )(~
&& φ−=                                    

(37) 
this will cause the second term to be zero. 

Since  WWWW &&&& ˆˆ~ −=−=   so that 

         TrqFW )(ˆ &
& φ=                 (38) 

which Equation 38 is Fourier series neural network weight 
adaptation algorithm. 

So differentiate of Lyapunov function in Equation 36 will be 
shorten to 

       εT
v

T rrKrL +−=&                              

(39) 
We can see from Equation 39 that if the first term larger or 

equal the second term, L& will be negative semidefinite which 
results in stable system. So if Kv is designed to be large enough, 

then 0>L  and 0≤L& . This resulting in r and W~  are 
bounded. The system is stable in the sense of Lyapunov (SISL). 
 
6. Simulations result 

The Fourier series neural network (FSNN) controller was 
implemented to control rotational wheel system together with 
stick-slip friction model in order to verify its performance.  The 
controller consists of partial plant inverse dynamic that exclude 
friction model and FSNN compensation controller to learn friction 



 

characteristics.  The PD controller is also used for guarantee 
stability of overall system.  As a result, the controller needs 
partial prior knowledge of the system dynamics.   

Parameters of the rotational wheel system for the simulation 
are designed as followed: J = 0.003164 kg-m2, 

)(10)( qsignqF && =  N-m. 
The desired input trajectory of the rotational wheel is given by 

  )sin(5.0 tqd =                (40) 

where qd  represent angular position the rotational wheel 
The plot for desired input trajectory for rotational wheel is 

shown in Figures 5. The simulations were performed using 
Simulink simulation software (The Math Works, Inc.).   

The data was collected at the interval of 0.01 sec.  Both PD 
controller gains, Kv and Kp, were designed to be 2 and 30, 
respectively.  The gains were selected such that the close loop 
system response behaves critical damped. 

All simulations were performed from 0 to 40 sec.  The 
simulation time length was set long enough in order to let FSNN 
acquired friction characteristics.  There were 2 different size 
FSNN; 2-frequency-based with 17 neurons and 5-frequency-
based with 101 neurons, in order to observed FSNN behavior 
and evaluated their performance. 

In the first simulation, 2-frequency-based with 17 neurons, the 
best possible learning rate for FSNN weight adaptation was 
determined and set at 25% of maximum permissible learning 
rate.    We can see that the trajectory friction approximation start 
decreasing right after the networks was adapting their weights in 
order to minimize the feedback error from the rotational wheel. 
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Figure 5.  Desired input trajectory 
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Figure 6.  Friction characteristics plot 

 
   Approximately after 25 sec, the FSNN gains proper 

knowledge of system dynamics by which their weight values were 
converged. Eventually FSNN controller provided an appropriate 
compensation control torque for friction effect onto the rotational 
wheel using its available weight value.  The control torque plot 
from FSNN was shown in Figure 7.  The best approximated 
frictional effect from FSNN is not as sharp as in the model one 
because the simulation uses the 2-frequency-based FSNN.  

In the other simulation, 5-frequency-based with 101 neurons, 
the best possible learning rate for FSNN weight adaptation was 
also determined and set at 25% of maximum permissible learning 
rate.    As we found before, the trajectory friction approximation 
start decreasing right after the networks was adapting their 
weights in order to minimize the feedback error from the 
rotational wheel.   About after 25 sec, the FSNN gains proper 
knowledge of system dynamics by which their weight values were 
converged. Eventually FSNN controller provided an appropriate 
compensation control torque for friction effect onto the rotational 
wheel using its available weight value.  The control torque plot 
from FSNN was shown in Figure 8.  The final approximated 
frictional effect from FSNN is better than in the previous one 
because the simulation uses higher number of frequency-based 
FSNN.    
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Figure 7.  Friction model from 2-freq-based FSNN 
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Figure 8.  Friction model from 5-freq-based FSNN 
 
7. Conclusions 

Prior controlled system dynamics knowledge is unnecessary 
for the proposed controller.  The FSNN required training period to 
gain system dynamics knowledge.  After the network was 
properly learned, the simulation results indicated FSNN learning 
ability in system dynamics and prolonging the tracking error after 
the weight adaptation was terminated.  The weights adaptation 
and stability of control system were confirmed using Lyapunov 
analysis. The tracking error was proved to be bounded and PD 
controller is necessary to ensure the overall stability.  Since 
FSNN is approximating missing system dynamic of controlled 
system, still, there exists mismatching between best 
approximation from the network and exact system dynamic.  As a 
result, the FSNN controller shows comparable stability to the 
regression adaptive controller with presence of system model 
mismatching.  The FSNN controller can be employed without 
precise knowledge of controlled system dynamics.  By its 
characteristic, the FSNN controller shows strong advantage for 
utilizing in nonlinear system control applications while acquire 
unknown system dynamics knowledge.   
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