
การประชุมวิชาการเครือขายวิศวกรรมเครื่องกลแหงประเทศไทยครั้งที ่21 

17-19 ตุลาคม 2549 จังหวัดชลบุรี 

 
Design for Robust Stability and Performance  

Using Fuzzy Gain Scheduling Based on Robust Stability Theorem 
 
 

P. Ngamsom1, A. Sanjamsa2, and A. Jaiyong3 

 
1 Department of Mechanical Automotive & Industrial Engineering, College of Engineering 

2, 3 Institute of Advanced Technology 
Rangsit University, 52/347, Lakhok, Maung, Pathumthani 12000, Thailand 

Tel: 0-2997-2222-40 Ext.1558 E-mail: 1 ngamsomp@hotmail.com 
 

 

Abstract 
 Using class gamma robust stability analysis theorem, 
we present in this paper design of fuzzy gain scheduling 
controller for linear systems subjected to time-varying 
nonlinear uncertainties in system parameters.  Unlike 
most gain scheduling techniques, ours is special in the 
sense that it addresses both robust stability and robust 
performance at the same time.  It is also free from 
restrictions on initial conditions, time rate of 
uncertainties, and time rate of gain scheduling.  Here, we 
provide design procedure for the general case, and apply 
it in an example to obtain a PID controller with 
differential gain scheduling for independent joint control 
of a modified SCARA robot arm.  Numerical simulations 
showed that the resulting tracking errors and oscillations 
were satisfactorily small when subjected to typically large 
uncertainties.  
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I. Introduction 
 A common characteristic of many gain scheduling 
controllers is that they offer stability and performance for 
linearized approximating models of a nonlinear 
dynamical system about equilibrium points or family of 
equilibrium points.  However, stability of linearized 
models about such points does not guarantee stability of 
the corresponding nonlinear system in general [1]. 
Accordingly, gain scheduling is a controller design 
technique that focuses more on practical applications than 
theoretical rigors.  Despite this common serious 
weakness, gain scheduling is the technique of choice in 
many demanding and extremely complex uncertain 
nonlinear systems such as fighter aircrafts [2], and fuel 
injected internal combustion engines [3].  This is 
generally because a more desirable nonlinear solution 
could not be found. 

 Fuzzy logic has been employed for decades in many 
realistic applications to transform proven linguistic 
knowledge and reasonable opinions to the corresponding 
numerical outputs.  In particular, many gain scheduling 
schemes for PID controllers were based on fuzzy logic, 
see [4, 5] and references therein.  Despite of its popularity 
in the control community, the mapping it provides is 
usually extremely nonlinear.  Accordingly, stability of the 
resulting control system is usually very difficult to show 
analytically.  Although many investigations on this matter 
were conducted using numerical simulations [4-6], these 
were insufficient for predicting complex behaviors of 
nonlinear systems in general.  
 Robust stability analysis (RSA) theorems were 
employed to address stability of time-varying uncertain 
linear systems in [7-9].  RSA theorems belonging to class 
gamma [10] found applications in controller design with 
exphasis of robust stability in [10-11].  This RSA 
theorem was extended to address simultaneously robust 
stability and robust performance for the same class of 
systems by means of gain scheduling in a general setup 
[12].  While necessary theoretical foundations for robust 
performance were given there, the paper did not propose 
a specific approach for it.  This paper is then written to 
propose specifically the use of fuzzy logic to achieve 
robust stability and performance in details.  The resulting 
fuzzy gain scheduling PID controller is guaranteed to be 
stable and is free from restrictions on initial conditions 
and time rate of scheduled variables usually found in 
many gain scheduling techniques.   

2. Mathematical Description 
 In this paper, we are interested in computing gain 
scheduling control laws that guarantee input-to-state 
stability for linear systems with time-varying nonlinear 
uncertainties in system parameters: 

[ ( )] [ ( )][ ( )]
( )

nx A A x,t x B B x,t K K x,t x
f x,u

= + Δ − + Δ + Δ

+

&
 (1) 

where ∈ℜnx  is the state vector, the system matrix 
×∈ℜn nA  is known, the input matrix ×∈ℜn mB  is 



known, m n
nK ×∈ℜ  is the nominal state feedback gain 

matrix to compute, the state-independent input ∈ℜ pu  is 
unknown, the bounded nonlinear uncertain perturbation 
( )∈ℜnf x,u  is unknown, and Δ  denotes time-varying 

nonlinear uncertainties with appropriate dimensions and 
known bounds on matrices A and B.  Special attention 
should be drawn towards ( )ΔK x,t  which represents 
uncertainties associated with the nominal state feedback 
gain matrix nK  of the system of interest.  Note that the 
origin is the equilibrium point of Eq.(1), whose right hand 
side is continuously differentiable and is globally 
Lipschitz in x and u, uniformly in t.  A nonzero 
equilibrium point can always be shifted to the origin by 
redefining relevant state variables appropriately.    

3. Fuzzy Gain Scheduler 
 Fuzzy logic theory allows plausible mathematical 
representations of multi-valued logics that humans use for 
decision-making and reasoning.  By carefully observing 
characteristics of system responses when subjected to 
various inputs and disturbances over reasonable periods 
of time, it may be possible to select linguistic variables 
that capture or dominate system dynamics.  Then for a 
linguistic variable, we define membership functions to 
describe it in fuzzy domains.  From that we define fuzzy 
rules and thus fuzzy rule base for gain scheduling, which 
represent one's knowledge on dynamics of the system of 
interest. 
 We propose that the uncertain matrix m nK ×Δ ∈ℜ  is 
composed of two components: 

Δ = Δ + Δu pK K K     (2) 

where uKΔ  is the component of "true" uncertainties 
associated with the nominal gain matrix nK  and the 
corresponding available specifications, and pKΔ  is the 
component of "psudo"-uncertainties that is scheduled by 
using fuzzy logic.  We manage robust stability and 
performance of the resulting control system through the 
nominal gain matrix nK  and the scheduled gain matrix 

pKΔ  respectively.   
 We adopt for our presentation definitions and results 
relating to fuzzy logic in [13].  Here, the thq  fuzzy IF-
THEN rule for scheduling ( )Δ pK k ,l - the ( )k ,l  element 

of pKΔ , is given by: 

IF  { 1v  is 1F  and ... and  pv  is pF }q  

THEN { ( )Δ pK k ,l  is ( )T k ,l }q 

where gv ,   1   g , ..., p=  is the thg  linguitic scheduling 

variable, p is the number of linguistic variables, gF  is a 

fuzzy set associated with gv , and ( )T k ,l  is a fuzzy set 

associated with ( )Δ pK k ,l .  The membership value of 
the IF part is computed using the product rule: 

( ) ( )1 1μ = μ μ pIF p v..v  

where μg ,  1   g , ..., p=  is the thg  membership function 

of fuzzy set in the IF part that describes gv  for which we  

impose that 0 1≤ μ ≤g . Now let gf  be the center of the 

fuzzy set ( )T k ,l  associated with the THEN part of the 
thq  fuzzy rule, we employ center-average defuzzifier to 

compute ( )Δ pK k ,l  according to the equation: 
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1 1
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where ∈ℜc  is the scaling factor for ( )ΔK k,l , and w is 
the number of fuzzy rules in the fuzzy rule base for 
scheduling ( )ΔK k,l .  We allow adaptation of fuzzy 
parameters at any rate, provided that the adaptation law is 
continuously diffirentiable and are globally Lipschitz as 
stated in the previous section. 

4. A Class Gamma Theorem 
 When ignoring the unknown perturbation vector 
( )∈ℜnf x,u  and all structed specifications associated 

with uncertain matrices  and Δ Δ ΔA, B, K  are available, it 
is always possible to write the interested equation of 
motion in the following form: 

( )1  == + ⎡ ⎤∑ ⎣ ⎦& r
j jj h Ex Ax x,t x    (4) 

where ≡ −A A BK  is known, ×∈ℜn n
jE  is known, and 

( )  ∈ ⎡ ⎤⎣ ⎦lj ujj h , hh x,t  is a time-varying nonlinear uncertain 
scalar function with known bounds.  We require that the 
uncertainty specifications j ujE ,h ,  and ljh  are known for 
all uncertain elements in the control system.  For 
convenience, we now provide the reader a class-gamma 
robust stability theorem from [12] that states sufficient 
conditions for exponential stability of the system of 
interest in Eq.(4).  A proof for this theorem can be found 
in [12]. 
 
Theorem 1 [12] If the dynamical system in Eq.(4) is 
continuously differentiable and is globally Lipschitz with 
matrix A  being Hurwitz and 

( )( ) 0<λmax Z     (5) 

where ( )( )max Zλ  is the maximum eigenvalue of Z, then 
the equilibrium point at the origin is globally 
exponentially stable.  The matrix ×= ∈ℜT n nZ Z  is 
obtained by: 
1) Specified Q > 0 and A  to compute P from the 

Lyapunov equation ( )[ ]1 2 TQ / PA A P− = + . 

2) Compute 1
r
jl lj jA A h E== + ∑ , and T

l lPA A PΦ = + . 

3) Compute T T
j jj jPE E P+⎡ ⎤Ψ = = Ψ⎣ ⎦ . 

4) Compute 
Ψ Ψ Ψ 1 ΨΨΛ T Ψ T diag[ ]= = λ λKT

j nj j j jj
, where 



1 nj jj
v vT Ψ ΨΨ …⎡ ⎤= ⎣ ⎦ , and { }1 nj jv , ,vΨ Ψ…  

is the set of n orthonormal eigenvectors of Ψ j .   

5) Compute 0
ΨΛ
≥

j
 by setting all negative elements of 

ΨΛ j  to zero  

6) Compute 00 T
j j j j

T T≥≥
Ψ Ψ ΨΨ = Λ . 

7) Compute ( ) 0
1

r
uj ljj jh hZ ≥

= ⎡ − ⎤≡ Φ + Ψ∑ ⎣ ⎦ . 

 By Lyapunov stability theorem, exponential stability 
of the unperturbed system implies that the perturbed 
system is input-to-state stable, that is bounded inputs 
produce bounded states [1].  We employ this theorem to 
determine allowable bounds on true uncertainties and 
psudo-uncertainties. The latter leads to a sufficient 
condition for input-to-state stability of our fuzzy gain 
scheduling control system discussed in the next section. 

5. Stability of Fuzzy Gain Scheduling System 
 Stability of the fuzzy gain scheduling system is 
addressed as Lemma 1 in the following: 

Lemma 1 For the fuzzy gain scheduling system 
proposed proviously, suppose Theorem 1 is satisfied with 
a set of upper and lower bounds on all elements of  

  Δ Δ Δ uA, B, K  and Δ pK  then system is input-to-state 
stable if for all k = 1, ..., m, and l = 1, ..., n, the fuzzy rule 
base for scheduling ( )Δ pK k ,l  is such that: 

( ) ( ) ( )( )

( ) ( ) ( )( )
1

1
 

=

=
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w

u qq

w
ql q

h k ,l c k ,l max f k ,l

fh c min k ,lk ,l k ,l
   (6) 

where ( )uh k ,l  and ( )lh k ,l  are the allowable upper and 
lower bounds on ( )Δ pK k ,l  respectively, and w is the 
number of fuzzy sets.  

Proof By Theorem 1, if all the upper and lower bounds 
on all elements of    uA, B, KΔ Δ Δ  and Δ pK  are such that 
the theorem is satisfied, then the fuzzy gain scheduling 
system is guaranteed to be input-to-state stable.  It then 
remains to show for all k = 1, ..., m, and l = 1, ..., n that 
the fuzzy rule base for ( )Δ pK k ,l  is such that: 
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Now, notice for the center-average defuzzifier that 

( )
( ) ( )( )
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Accordingly, the fuzzy rule base is as required if the two 
conditions in the theorem are satisfied simultaneously.  
This completes the proof. 

 Basically, Lemma 1 states that if Theorem 1 is 
satisfied with a set of upper and lower bounds on all 
elements of    uA, B, KΔ Δ Δ , and Δ pK  then the system is 
input-to-state stable if the centers of all fuzzy sets in the 
THEN part of all fuzzy IF-THEN rules are bounded by 
those associated with appropriate element of Δ pK .  The 
shape of membership functions do not affect stability of 
the fuzzy gain scheduling system. 

6. Design of Fuzzy Gain Scheduling System 
 We propose that design of our fuzzy gain scheduling 
system is separated into two parts.  This former is for 
robust stability and the latter is for robust performance.   

Part I: Robust Stability 
 We propose the following two-step design for robust 
stability 
1. Apply existing linear robust control techniques to 
find the nominal gain matrix nK  such that the necessary 
condition of [ ]nA BK−  being Hurwitz is satisfied.   
2. Employ Theorem 1 to find all allowable bounds on 
uncertain elements of   Δ Δ Δ uA, B, K  and Δ pK .   
 Note for this part that allowable bounds resulting 
from an existing robust control technique may be more 
conservative than those resulting from others.  We 
generally require that these bounds are the least 
conservative because they imply strong robustness for the 
system, and allows large variation for Δ pK .  Typically, 
we find that the procedure in [11] can be employed to 
accomplish the above two steps simultaneously such that 
the resulting allowable bounds are larger than required.     

Part II: Robust Performance 
 The system is guaranted to be input-to-state stable 
under any scheduling scheme on ( )Δ pK k ,l , provided 
that it obeys the corresponding upper and lower bounds 
determined in Part I.  Here, we do gain scheduling using 
fuzzy logic primarily because it provides means to 
improve performance of the control system by using 
relevant human knowledge and reasoning in the form of 
fuzzy IF-THEN rules.  Although a fuzzy scheduling 
scheme is usually specific to its applications. it can 
usually be captured by the following two IF-THEN rules: 
R1. IF {the error is large and the error is increasing} 
THEN {the control action in the direction that forces the 
error to decrease should be strengthened}. 
R2. IF {the error is large and the error is decreasing} 
THEN {the control action in the direction that forces the 
error to decrease  should be weakened}.  
where the degrees of "large", "increasing", "decreasing", 
"strengthened", and "weakened" are described by the 
relevant membership functions.  Variation in degrees of 



these qualities leads to additional fuzzy rules and thus 
fuzzy rule bases.   

7.  Example 
 Consider the problem in which a DC actuating motor 
for joint 2 of a modified SCARA robot is controlled 
independently to track a time-varying trajectory [12].  
Dynamics of the system can be represented by: 

( ) ( )

( )

1 1

2 2

1 13 3

0 1 0 0
0 0 1 0
0 0 3.8 89.3

0
0

4 25 254 6
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&
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&& &

A B

d

x x
x x V

h hx x
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where state variable 2x  is trajectory error, 1 2dt= ∫x x , 
and 3 2= &x x , r  is trajectory reference signal, dT  is 
disturbance torque resulting from coupled dynamics of 
manipulator links, 1Ah  and 1Bh  are uncertain constants 
that depend on manipulator mechanical properties.  The 
manipulator is shown in Fig. 1. 
 

 
Fig. 1 The Modified SCARA Robot in the Example 

 
 
The available uncertainty specifications associated with 

1Ah  and 1Bh   are upper and lower bounds: 

1 1 1[0  0.86] [  ]∈ ≡A l ,A u ,Ah , h , h  

1 [0  20.52]∈Bh , 1 1[  ]≡ l ,B u ,Bh , h  
Now, let us employ the PID gain scheduling control law: 

( )= −V K x x  
where ( ) ( )i p d dK x K K K K x⎡ ⎤= + Δ⎣ ⎦ , iK , pK  and 

dK  are scalar constants, and ( )Δ dK x  is the scheduled 

change of differential gain dK .  Using this control law, 
dynamics of the system is given by: 

( ) ( )

1 1

2 2
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where the nominal gain matrix is ⎡ ⎤≡ ⎣ ⎦n i p dK K K K , 
and  

( ) ( )2 189.3≡ − + ΔA B dh ( x ) h K x  

 Note that we have accounted ( )Δ dK x , the scheduled 
variation of the differential gain, as an additional 
uncertain element ( )2Ah x  of the system matrix.   
 To achieve robust stability for the uncertain control 
system, we employ the given procedure to obtain the 
nominal state feedback gain matrix nK  that accounts for 
all uncertainties, and allowable bounds on ( )Δ dK x : 

[ ]6 10 4 5 98= − − −nK . .  
( )5 0 0− ≤ Δ ≤d. K x  

with symmetric matrices relating to Theorem 1: 
3

3

3

3.47 2 3 7 10
3.48 6 5 10

3 7 10

−

−

−

×⎡ ⎤
⎢ ⎥= ×⎢ ⎥
⎢ ⎥×⎣ ⎦

.
P ... .

... ... .
, 

2 1.73 1
... 4.01 1.73
... ... 1.99

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Q  

and 
3 54 2 67 2 56

6 63 4 44
3 28

− − −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

. . .
Z ... . .

... ... .
.  The maximum 

eigenvalue of Z is 0.045− .  By Theorem 1, the uncertain 
system is input-to-state stable provided that ( )Δ dK x  
obeys the above bounds. 
 We now employ the preferred type of fuzzy gain 
scheduler: 

( ) ( ) ( )( )

( ) ( ) ( )( )

25
1 2 3 31 2

1
25

1 2 3 31 2
1

=

=

μ μ μ∑
Δ =

μ μ μ∑

q qq
d

qq

f xx x
K c
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where we set c = 1, and w = 25.  Note that ( )μ gg x , 
 1  2  3g , ,=  is the membership function of fuzzy set in 

the IF part that describes gx .  We set ( )1 1 1μ =x , while 
the membership functions and the corresponding fuzzy 
sets that describe 2x  and 3x  in the IF part are shown in 
Table 1.  Notice that these membership functions are 
continuously differentiable and are globally Lipschitz in 
their variables.  For this particular example, the 
membership function of a fuzzy set that describes 2x  is 
the same as the corresponding one for 3x , although this is 
not the case in general.  We define these membership 
functions according to important characteristics of 
nominal system responses when subjected to various 
inputs and disturbances. 

Joint 2 



 We put 25 fuzzy IF-THEN rules in the fuzzy rule 
base shown in Fig. 2.  Note that the numbers in the rule 
base are the centers of membership functions of fuzzy 
sets for Δ dK  in the THEN part and not the fuzzy sets 
themself.  Notice that all the centers are bounded by the 
lower and upper bounds on Δ dK  computed previously.  
Accordingly, the two conditions in Lemma 1 are satisfied 
simultaneously. 
 
Table 1 Membership Functions of Relevant Fuzzy Sets 

Fuzzy Sets Membership Functions for gx , g = 2, 3 

NB ( )1000x 7g1/ 1+e +μ =g  
NS 281632 65 0 004− +μ = . ( x . )g

g e  
Z 5 22 5 10− ×μ = . xg

g e  
PS 281632 65 0 004− −μ = . ( x . )g

g e  
PB ( )1000 71 1 − +μ = + xg

g / e  

 
 Using the specified fuzzy differential gain 
scheduling, we run numerical simulations for the case in 
which all the initial conditions are zeroes, and  

( )( )78   0 2 4= +r t . sin t , 

( ) ( )( )  0 2 10 10 2= + +dT . sin cost t ,  
Although 1Ah  and 1Bh  are uncertain constants, we 
impose the following nonlinear functions for them to 
pose additional difficulties for the controller: 

( ) ( )( )1 1
0 86 1

2
= +A

.h sin xx , 

( ) ( )( )1 3
20 52 1

2
= +B

.h cos xx . 

Simulation results in Fig. 2 show ( )Δ dK t  and ( )2x t  
during 0 10≤ ≤t s  corresponding to the cases in which 
the fuzzy gain scheduler presents and absents.  Notice for 
both cases that trajectory errors ( )2x t  are bounded.  In 
addition, trajectory error corresponding to the former case 
is significantly less than that corresponding to latter 
during transient period of 0 2≤ ≤t s , and during 
4 10≤ ≤t s .  Responding speeds in both cases are similar. 
 

3x   

NB NS Z PS PB 

NB -4.784 -3.588 -2.99 0 0 

NS -3.588 -3.588 -2.392 0 0 

Z -2.99 -2.392 -2.392 -2.392 -2.99 

PS 0 0 -2.392 -3.588 -3.588 

 

 

2x  

PB 0 0 -2.99 -3.588 -4.784 

Fig. 2 Fuzzy Rule for Scheduling Δ dK  

 

 
Fig. 3 Simulation Results of the fuzzy Gain Scheduling 

System 

8. Conclusion 
 In this paper, we address the problem of robust 
stability and performance of linear systems subjected to 
time-varying nonlinear structured uncertainties in system 
parameters using fuzzy gain scheduling control.  Under 
the assumption that all the relevant uncertainty 
specifications are available, we propose a two-steps 
robust controller design technique.  In the first step, we 
put with existing uncertainties all variations of the 
scheduled gains as psudo-uncertainties, and then employ 
an appropriate class-gamma robust stability analysis 
theorem to determine a nominal linear control law that 
guarantees input-to-state stability for the uncertain 
system.  In the second step, human knowledge and 
opinion on system dynamics is employed to increase 
performance through fuzzy gain scheduler, which is 
designed according to the relevant allowable bounds for 
the psudo-uncertainties obtained in the first step.    
Extensive numerical simulations confirm that the 
proposed fuzzy gain scheduling system is robustly stable 
when presented with the parameter uncertainties.  When 
the control system is subjected to time-varying reference 
signal and external disturbances, the fuzzy gain scheduler 
can decrease tracking errors, and improve transient 
response characteristics significantly. 
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