
Multigrid Acceleration of Three Turbulence Models in Predicting Stratified 
Flow Driven by Natural Convection in a Square Cavity

1*Kiattisak Ngiamsoongnirn, 2Varangrat Juntasaro and 1Ekachai Juntasaro

1School of Mechanical Engineering, Institute of Engineering,
Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand,

Tel: (+6644) 224410-2, *Email: kiatt2000@hotmail.com
2Department of Mechanical Engineering, Faculty of Engineering,

Kasetsart University, Bangkok 10900, Thailand,
Tel: (+662) 9428555 ext 1829, Email: fengvrj@ku.ac.th

Abstract: This paper presents the implementation of three 
low-Reynolds-number turbulence models into the self-
developed CFD code to simulate the thermally driven 
airflow due to natural convection inside a square cavity. 
The turbulence models selected in this work are the k ε−
model of Launder & Sharma (LS) [1], the SST k ω−

model of Menter (SST) [2], and the 2v f−  model of 
Durbin (V2F) [3]. The capability in prediction of each 
model is evaluated in terms of accuracy of the computed 
results compared to the experiment of Ampofo (EXP) [4] 
and the convergence behavior of each one will be 
discussed in details. To accelerate the rate of 
convergence, this paper adopts a multigrid technique to 
annihilate an improper error in each grid set.

Keywords: Low-Reynolds-Number; Multigrid 
Acceleration; Natural Convection; Square Cavity

Nomenclature
a Empirical constant in turbulence model
A Matrix coefficient

fB Blending function in turbulent model

11 2 3 L 2 3C , C , C , C , C , C , C , C , C  ε ε ε η µ

Empirical constant in turbulence model
nd Normal distance to the nearest wall

f Intermediate variable in turbulence model

1 2f , f , f  µ

Damping functions
g Gravitational acceleration

BG Turbulent buoyancy production
h Grid size
i, j Direction coordinates

b a
aI φ Interpolation operator with the data aφ

transferred from a up to b
k Turbulent kinetic energy
L Width of cavity, turbulent length scale
p Pressure

kP Turbulent production
Pr Prandtl number [ /ν α= ]
Ra Raleigh number [ 3( ) /( )H Cg T T Lβ αν= − ]
S Source term in general transport equation
T Temperature, turbulent time scale

H CT , T Hot and cold wall temperature respectively 

refT Reference temperature [ ( ) / 2H L= T T+ ]

ju Mean velocity components in j -direction

0V Buoyancy velocity [ ( )H Cg L T Tβ= − ]
2v Turbulent velocity scale
jx Coordinate in j -direction 

Greeks 
α Thermal diffusivity

1 2, , , α α α α∗

Empirical constant in turbulence model
β Coefficient of thermal expansion 
δ Kronecker delta
µ Molecular dynamic viscosity

tµ Eddy dynamic viscosity 
ν Molecular Kinematics viscosity [ µ ρ= / ]

,ε ε% Dissipation rate of turbulent kinetic energy
φ Independent variable in general transport 

equation, approximate solution
ρ Fluid density

, , ,k k1 k2 1 2 T , ,   , , ε ω ω ωσ σ σ σ σ σ σ σ
Turbulent Prandtl numbers

ω Specific Dissipation rate of turbulent kinetic 
energy

Γ Diffusion coefficient

1. Introduction
The cavity type of flow and heat transfer 

phenomena is encountered in many engineering 
practices, e.g. room heating, cooling of electrical and 
electronic equipment, crystal growth, flows in nuclear 
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reactor and fire-induced smoke spread, etc. All these 
enclosure flows are commonly dominated by buoyancy 
and near wall effects. Although the geometry and 
boundary conditions of a cavity are so simply and can 
easily be implemented in numerical simulation. However, 
the phenomena of flow regarding free convection in a 
square cavity with two differentially heated vertical walls 
are somewhat complex and much more complex with 
increasing Raleigh number, 6 1210 Ra 10≤ ≤ . The core 
region is largely stratified and laminar. The rapid change 
of flow is trapped in the vicinity of the wall. In addition, 
the flow in this case might include simultaneously 
laminar, transition, and turbulent regions leading to none 
of turbulent model can predict correctly the whole flow 
field [4]. 

Over the past decades, several achievements in 
simulation of isothermal flows and non-isothermal 
convective flows using the two-equations turbulence 
model are presented in the literature. Only a few works 
have concerned with natural convection, especially free 
convection in a square enclosure, which is hardly tractable 
by the two-equations turbulence model at very high Ra
[5]. Moreover, an attempt in using a multigrid technique 
to accelerate convergence rate does not appear in the 
literature. For this reason, it challenges to simulate a 
turbulent natural convection in a square cavity by using 
the two-equations turbulence model with the multigrid 
accelerator. This motivates the presence of the present 
work. 

2. Governing Equations
2.1 Mean Flow and Energy Equations

The Reynolds-averaged Navier-Stokes equation and 
the time-averaged energy equation are considered in the 
present work. For a steady incompressible flow, the 
equations governing fluid flow and heat transfer can be 
expressed as follows:

the mean continuity equation

( ) 0j
j

u
x

ρ
∂

=
∂

;

the mean momentum equation

( )

( )

ji
j i i j

j i j j i

i ref

uupu u u u
x x x x x

                      g T T

ρ µ ρ

ρ β

⎡ ⎤⎛ ⎞∂∂∂ ∂ ∂ ′ ′= − + + −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
− −

;

and the mean energy equation represented by mean 
temperature equation

( )
Prj j

j j j

Tu T u T
x x x

µρ ρ
⎡ ⎤∂ ∂ ∂ ′ ′= −⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
.

This averaging process gives rise to the two unknowns: 
the Reynolds stress i ju u′ ′  and the turbulent heat flux 

iu T′ ′ . Based on the Boussinesq approximation, the 
Reynolds stress can be expressed as

2
3

j i
i j t ij

i j

u u
u u k

x x
ρ µ ρ δ

⎛ ⎞∂ ∂′ ′ = − + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 ,

and with the standard gradient diffusion hypothesis, the 
turbulent heat flux is in the form

t
j

T j

Tu T
x

µ
ρ

σ
∂′ =
∂

,

where ig  represent to xg  and yg  in which xg  is 

omitted and 29.81 /yg g  m s= − = −  which is the 
gravitational acceleration, and for ideal gas 1/ refTβ = .

2.2 Turbulence Modeling Equations
The Reynolds stress based on the Boussinesq 

approximation is related to the velocity gradient, the 
turbulent kinetic energy and the eddy viscosity. The 
eddy viscosity remains the unknown quantity, which 
needs further modeling. This leads to the eddy viscosity 
model. It is modeled relating to the turbulent quantities 
in which these turbulent quantities possess their own 
transport equations. There are several zero, one, two or 
more equations turbulence models proposed in the 
literature. The three low-Reynolds-number versions of 
two-equations turbulence models are considered in this 
work: k ε− , k ω− and 2v f− . They can be described 
in detail as follows.

2.2.1. k ε%-  Model of Launder and Sharma
The turbulent kinetic energy equation and the 

dissipation rate of turbulent kinetic energy equation are 
formulated respectively as

( ) ( )t
j k B k

j j k j

ku k P G D
x x x

µ
ρ µ ρ ε

σ

⎡ ⎤⎛ ⎞∂ ∂ ∂
= + + + − +⎢ ⎥⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

%

1 1 3

2 2

( )
( ) t k B

j
j j j

C f P C G
u

x x x T

C f
          E

T

ε ε

ε

ε

µ ερ ε µ
σ

ρ ε

⎡ ⎤⎛ ⎞ +∂ ∂ ∂
= + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

− +

%
%

%

where 
2

2
j

k
x

µε ε
ρ

⎛ ⎞∂
= + ⎜ ⎟⎜ ⎟∂⎝ ⎠

% is modified to simplify the 

boundary condition for the dissipation rate of turbulent 
kinetic energy and the extra source term E  is added to 
account for the near wall effect. The eddy viscosity and 
turbulent time scale are defined respectively as

t C f kTµ µµ ρ= , kT
ε

= .
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2.2.2 SST k ω−  Model of Menter
In this model, the turbulent kinetic energy dissipation

rate is altered to the specific one with the relation 
~ / kω ε . The turbulent kinetic energy equation and its 

specific dissipation rate in this model are respectively 
expressed as

( ) *( )j k t k B
j j j

ku k P G k
x x x

ρ µ σ µ ρα ω
⎡ ⎤∂ ∂ ∂

= + + + −⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

( ) 2
3( ) ( )

2(1 )

j t k B
j j j t

f
j j

C
u P C G

x x x

k            B
x x

ω
ω

ω

ω
ρ ω µ σ µ ραω

µ

ρσ ω
ω

⎡ ⎤∂ ∂ ∂
= + + + −⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
∂ ∂

+ −
∂ ∂

The blending function fB appeared in the ω − equation, 
which blends the model coefficients of the k ω−  model 
in boundary layers with the transformed k ε−  model in 
free-shear layers and free stream zones, is defined as

4
1tanh(arg )fB = ,

where 2
1 2 2

4500arg min max , ,
n n k n

kk
d d CD d

ω

ω

ρσµ
α ω ρ ω∗

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

and 2022
max ,10k

j j

kCD
x x

ω
ω

ρσ ω
ω

−
⎛ ⎞∂ ∂

= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
.

The eddy viscosity is modeled as

min ,t
k ka

a b
ρ ρµ
ω

⎛ ⎞= ⎜ ⎟Ω⎝ ⎠
,

where 
2

v u
x y

⎛ ⎞∂ ∂
Ω = −⎜ ⎟∂ ∂⎝ ⎠

, 0.31a = , 2
2tanh(arg )b = ,

and 2 * 2

2 500arg max ,
n n

k
d d

µ
α ω ρ ω

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
.

2.2.3. 2v - f  Model of Durbin

The 2v - f  turbulence model is an alternative to the 
k ε-  model and was introduced to model the near-wall 
turbulence without the use of exponential damping or wall 
functions [6]. The model requires the solution of four 
differential equations, two of which are the basic 
equations for k  and ε  which are the same those as 
Launder and Sharma model, including the eddy viscosity,
with different turbulent time scale, extra terms and 
damping functions, and in addition ε%  replaced with ε . 
The two additional equations are the transport equation of 
turbulent velocity scale and the helmoltz-like elliptic 
relaxation for intermediate equation f , which can be 
written as follows:

The turbulent velocity scale equation is in the form

2
2 2( ) 6t

j
j j k j

vu v kf v
x x x k

µ ερ µ ρ ρ
σ

⎡ ⎤⎛ ⎞∂ ∂ ∂
= + + −⎢ ⎥⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

,

The helmoltz-like elliptic relaxation for the 
intermediate variable f is formulated as

2 2
2 2

1 1 32

1 2( 1) ( 6) ( )
3 k B

i

Cf vf L C C P C G
T k kx ε

⎡ ⎤∂
− = − − − + +⎢ ⎥

∂ ⎢ ⎥⎣ ⎦

where the length scale L  and the time scale T  are 
defined respectively as

3 3
2 2 2

2max ,L
kL C Cη

ν
εε

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
, max ,6kT ν

ε ε
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

.

2.2.4 Initial and Boundary Conditions
To initiate the guessed value of the considering 

variables, the initial velocity and temperature in all 
models are specified with stagnant velocity and mean 
temperature averaged between the hot and cold walls 
temperature, respectively. The turbulent kinetic energy 
and turbulent dissipation rate or specific turbulent 
dissipation rate are specified such that the order of eddy 
viscosity is much more than the order of molecular 
viscosity. This paper specifies as follows: 310k −= , 

510ε ε −= =% , and 310ω −= . In case of 2v f− model, 

the turbulent velocity scale 2v  and an intermediated 
variable f  are set as 2 310v f −= = .   

In regard to the boundary conditions, the no-slip 
condition is applied at all sides of the wall resulting a 
known boundary condition for velocity. For 
temperature, the left vertical wall is heated with 
constant temperature at 50HT  C= o  and the right one is 
cooled at 10CT  C= o . The upper and lower horizontal 
wall are linearly interpolated between the left and right 
vertical ones. To set the boundary conditions for the
turbulent quantity and relevant variables, different 
models are set in different ways. They are specified as 
follows:

k ε− Model of Launder and Sharma: 0k ε= =% ;

SST k ω−  Model of Menter: 0k = , 2
1 1

60
d
µω

ρα
= ; 

2v f− Model of Durbin: 2 0k v f= = = , 2
1

2 k
d
µε

ρ
= ;

where 1d  is the distance from the wall  next to the first 
node.

2.2.5 The Model Constants and Damping Functions
It is clearly apparent that there is the common terms 

appeared in all models. They are the turbulent 
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2 2 2 2 2 2 2 2ˆ ˆ( )h h h h h h h h h
h hA I e A S S I Rφφ φ+ − = − +% % ,

this is the restriction process, where the super script ‘^’ 
denotes the information calculated from the restricted 
solutions. Moving the known quantities to the right-hand 
side, the equation is reduced to

2 2 2ˆ( )h h hA C Sφ = +% % ,

where
2 2 2h h h h

hI eφφ φ= +% %  and 2 2 2 2 2ˆ ˆ ˆ( )h h h h h h h
h hC A I S I Rφ= − +% . 

The term 2ˆ hC  is kept constant during the iteration. It 
should be noted that 2ˆ hS and 2hS%  were identical at the 
first iteration, as the iterations have progressed, they will 
differ each other resulting in driving a coarse grid iteration 
process. The restricted residual and the different in source 
terms behave like the source-driving term. Thus the coarse 
grid equation is the source-driven procedure. 
Subsequently, having a required little iteration at coarser 
grid finished, the correction is calculated using the 
following formula: 

2 2 2 2 2h h h h h h
new old new he Iφ φ φ φ φ= − = −% % % % .

Hence the correction is transferred back to the finest grid, 
this is the prolongation process. Then the finest grid 
solution is corrected there using the prolonged correction 
as follows:

2
2

h h h h
new old hI eφφ φ= +% % .

Up to now, one multigrid V-cycle is complete. This 
version of multigrid method is the full approximation 
storage (FAS) scheme in which the approximate solution 
at fine grid is also restricted onto the coarser grid, not only 
the residual. The restriction and prolongation are done by 
bi-linear interpolation for the field variables, but different 
approach for the residuals, which are restricted by area,
weight-averaged. In this paper, however, even the 
turbulent quantities are restricted to the coarse grids; they 
are not solved there and the correction process is not 
performed, they are used to calculate the eddy viscosity at 
the coarse grids only. Special treatment should be 
carefully done for the calculation of turbulent quantities at 
the coarse grids to avoid being negative value, usually 
physical non-negative value.

5. Results and Discussion
The two main issues considered in this work are the 

multigrid efficiency and the accuracy of each turbulence 
model used. The multigrid efficiency is first investigated 
here because all the computed results are obtained with 
the use of multigrid computation. The finest grid contains 
160x160 number of grid points and four levels of grid are 
used in all cases. Fig. 1-3 show the residual histories in 
the calculation by using the k-ε  model, the k-ω -SST 
model and the 2 -v f model respectively. Among these 

results, it is found that the multigrid technique exhibits 
very high efficiency for the simulation in the LS model. 
The respective degradations in efficiency are observed 
for the SST and V2F models. The LS model cannot be 
estimated the portion of computing time that could be 
reduced, because the converged state of single grid 
computation could not be obtained. The multigrid 
technique can save the computing time by 3 hours for 
the SST model and 1 hour 30 minutes for the V2F 
model. Obviously the efficiency of the multigrid 
technique performed in the SST model is higher than 
that performed in the V2F model. It should be noted 
that the eddy viscosity relation in the SST model is also 
associated with the velocity components, whereas in 
the V2F model the eddy viscosity is only related to the 
turbulent quantities. Since the velocity components are 
updated every multigrid cycles, this leads to the update 
in the eddy viscosity for the SST turbulence model 
resulting in faster convergence rate. On the other hand, 
the residual reduction oscillates strongly for the single 
computation of the SST model, while the V2F model is 
rather smooth. Therefore, this can be revealed that the 
V2F turbulence mode is more stable than the SST 
turbulence model.

Figure 1. Residual reductions in the Launder & Sharma 
turbulence model by using single grid and multigrid.

Figure 2. Residual reductions in the SST- k-ω
turbulence model by using single grid and multigrid.
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Figure 3. Residual reductions in the 2v -f  model using 
single grid and multigrid.

Although the multigrid technique has gained in 
highest efficiency for the LS model computation, but the 
required converged solutions turn out to have lowest 
accuracy. As shown in Fig. 4, the SST and V2F models 
can predict correctly the vertical velocity profile along the 
horizontal centered line of a cavity, which are in good 
agreement the experimental data, while the LS model is 
poor in predicting the velocity profile. In Fig. 5 (a) and 
(b), the velocity profiles near vertical walls are enlarged 
for clearly viewing. It is found that the V2F model has 
better accuracy than the SST model.

Figure 4 Profile of vertical velocity component along the 
middle horizontal line.

Figure 5 Enlargement of velocity profiles in the vicinity of 
(a) left and (b) right vertical walls.

Figure 6 Temperature profile along the middle 
horizontal line.

Figure 7 Enlargement of temperature profile in the 
vicinity of (a) left and (b) right vertical walls.

The temperature profiles along the horizontal centered 
line of a cavity are shown in Fig. 6. Again the LS 
model is poor to predict the temperature profile, in 
particularly adjacent to the wall. In Fig. 7 (a) and (b), 
the profiles are enlarged in the vicinity of the wall. The 
V2F model can predict slightly better than the SST 
model does. It is found that all models underestimate 
the temperature in the core region. This might have 
been arisen by an excessive heat transfer at the bottom 
wall causing from an improper boundary condition for 
the two non-isothermal horizontal walls.

Figure 8 Turbulent kinetic energy profiles along the 
middle horizontal line.
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Figure 9 Enlargement of turbulent kinetic energy profile 
in the vicinity of (a) left and (b) right vertical walls.

Figure 10 Local Nusselt number along the walls: symbols 
(EXP), dash-dash (LS), solid (V2F) and dot-dot (SST).

The profiles of turbulent kinetic energy along the 
horizontal centered line of a cavity are shown in Fig. 8. As 
shown previously, the trend remains the same. The LS 
model fails to predict correctly the turbulent kinetic 
energy and the SST and V2F models are in good 
agreement with the experimental data. The enlarged views 
in the vicinity of the walls are shown in Fig. 9 (a) and (b). 
Obviously, the V2F model slightly over-predicts the 
turbulent kinetic energy, while the SST model 
substantially under-predicts the one. The predictions of 
heat transfer are shown in Fig. 10 via the local Nusselt 
number Nu along the wall. The abscissa s/H denotes a 
length along the cavity walls in the clockwise direction, 
where s/H = 0 and s/H = 4 are at the left-bottom corner. 
As the results shown, the SST model gives the best result 
among all models even it under-predicts the peak value of 
Nu. Even if the LS model can nearly predict the peak 
value of Nu over the other models, but in overall 
prediction, it over-predict too much, in particularly at the 
right-top and left-bottom corners.

As just discussed above, it seems that the V2F model 
is the best one in predicting turbulent natural convection 
in a square enclosure, which can be noticed from its 
capability in predicting the velocity, temperature and 
turbulent kinetic energy profiles much accurately. In 
addition, there is one issue regarding the relaminarization 
of solution, which is often encountered for certain two-

equations low-Re-number turbulence model. Then an 
additional attempt made in this work performs by 
lowering the required convergence point, i.e. lowering 
below 10-8. The results demonstrate something very 
interesting. The V2F model immediately becomes 
relaminarization, but the SST model does not. The 
computed results of the SST model are rather 
unchanged. In regard to the LS model simulation, the 
residual can be reduced only one order from here and 
then behaves like the residual history of a single grid, 
i.e. displaying the horizontal line one order below the 
single grid residual line; moreover, the improvement in 
solutions can not be observed.

6. Conclusions
This paper presents the implementation of a 

multigrid technique into the three low-Re-number two-
equations turbulence models. The turbulence models 
used in this work are the -k ε  turbulence model of 
Launder and Sharma (LS), the - -SSTk ω  turbulence 
model of Menter (SST), and the 2 -v f  turbulence 
model of Durbin (V2F). The tested problem with 
geometric simplicity but complexity in flow selected in 
this work is a natural convection in a square enclosure. 
The results show that the multigrid technique exhibits 
the highest efficiency for the simulation using the LS 
turbulence model. The degradations in efficiency are 
found in the SST and V2F turbulence models 
respectively. In contrast, at the required convergence 
point, the LS model gives the worse accurate solutions, 
but the V2F model gives the best accurate ones, while 
the solutions accuracy of the SST model are slightly 
lower than an accuracy of the V2F model. In other 
words, with lowering the required convergence point 
below the one set before, the V2F model immediately 
gives the laminar solution, while the SST model gives 
the unchanging solutions and the improvement in 
solutions of the LS model cannot be found. In heat 
transfer prediction, the SST model can predict more 
accurate than the other models. With several reasons, 
this can be concluded that the - -SSTk ω  turbulence 
model is more suitable to simulate the turbulent natural 
convection in an enclosure.
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