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Abstract

Recently, in order to heal the problem of degenerative disc 

disease, the major approach is spinal fusion. Nevertheless, the 

spinal fusion causes the fixed spine too rigid, carrying high stress 

at levels adjacent to the level fused. This paper is to propose a 

new conceptual design of posterior fixation device that is more 

flexible with natural motion than spinal fusion concept. In this 

proposed concept, a multi-objective topology optimization is 

applied to simulate a shape and structure of a posterior plate that 

satisfy the stiffness of the removed intervertebral disc in many 

directions. In this paper, the proposed concept is applied for 

finding the shape of posterior plate, the stiffness of which 

conforms to the stiffness from the experiment data of cow’s 

lumbar spine. From simulation results, the obtained design shape 

of the posterior plate has most of stiffness values close on the 

experimental stiffness.  Therefore, the proposed conceptual 

design provides an effective scheme to be further developed for 

design of the fixation device for the human spine. 
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 3: Finite element model before performing topology 

optimization
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3.2  GA 

Binary genetic algorithm (GA) 
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 (selection) 
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 Deb [7] 

 the Elitist Non-Dominated Sorting Genetic 

Algorithm  NSGA-II [7] 

 (non-dominated optimal solutions) 

 Pareto-optimal solutions [7] 
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Gene Chromosome (Design variables)

Population

 4: Representation of gene, chromosome and population in 

binary genetic algorithms 

 1: Parameters used in optimization 

Parameters Values 

Encoding mechanism Binary  

Population size 100 

Generation numbers 50 

Crossover probability 0.8 

Mutation probability 0.005 
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 5: Mapping chromosome to finite element model 

 6(a) checkerboard patterns 

 6 (b) non-connectivity patterns 

 6: checkerboard and connectivity analysis 
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 2:  Stiffness values in each direction 

Direction
Stiffness values 

from experiment 

Selected stiffness 

values from 

simulations

Lateral bending 1.7 1.7 

Flexion-extension
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3.0 5.6 

Axial rotation 9.8 9.8 
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 7(a): The Pareto-optimal solutions 
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 7(b): The Pareto solutions projected on axial rotation and 

lateral bending plane 

0.2
0.4
0.6
0.8
1.0

0

Axial rotation

0.2 0.3 0.4 0.5
Flexion-extension bending

Decision-making
point

 7(c): The Pareto solutions projected on axial rotation and 

flexion-extension plane 
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 8 (a): Back view        8 (b): Oblique view 

 8: Optimal structure of posterior plate of the selected 

solution
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results
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