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Abstract 
A nodeless variable element method is combined 

with the flux-based formulation to analyze two-
dimensional steady-state and transient heat transfer 
problems.  The nodeless variable element employs 
quadratic interpolation functions to provide higher 
solution accuracy without requiring additional actual 
nodes.  The flux-based formulation is applied to reduce 
the complexity in deriving the finite element equations as 
compared to the conventional finite element method.  The 
solution accuracy is further improved by implementing 
an adaptive meshing technique to generate finite element 
mesh that can adapt and move along with the solution 
behavior.  The effectiveness of the combined procedure is 
evaluated by heat transfer problems that have exact 
solutions. 
Keywords:  Flux-based formulation, Finite element 
method, Heat transfer 

1. Introduction 
 The finite element method has been widely used to 
solve for the response of aerospace structures caused by 
the thermal effect in the past decades [1].  New 
formulations have been developed and evaluated in order 
to improve the analysis solution accuracy, as well as to 
reduce the computational time [2,3].  For hypersonic 
vehicles design, intense aerodynamic heating may 
produce severe thermal stresses that can reduce the 
structural performance and may cause structural failure.  
Since the thermal stresses are sensitive to the thermal 
gradients, a thorough thermal analysis is required to 
predict detailed temperature distribution in order to 
produce accurate thermal stress solution.  In the 
prediction of the temperature distribution, the 
conventional finite element formulation with standard 
finite element types is frequently employed.  The solution 
accuracy is improved by simply refining the finite 
element model using consecutively smaller elements until 
a required convergence is met.  The solution accuracy can 
also be improved by using the h-method of adaptation 
where the mesh is globally or locally refined or coarsened 

[2,4], or the p-method by increasing or decreasing the 
order of the element interpolation functions [5].  
Recently, many researchers have proposed improved 
versions of the r-refinement method with moving mesh, 
so that mesh points are moved throughout the domain 
while the connectivity of the mesh is kept fixed [6]. 
 The objective of this paper is to develop a procedure 
to improve the predicted temperature distribution by 
using an alternative finite element method.  The nodeless 
variable finite element is introduced and employed in this 
paper in order to increase the temperature solution 
accuracy.  The nodeless variable finite element uses 
quadratic interpolation functions to describe the 
temperature distribution over the element without 
requiring additional actual nodes.  The use of nodeless 
variable finite element can also be referred to as a 
hierarchical methodology, since the element reduces to 
the standard linear element when the nodeless variables 
are constrained to zero or eliminated.  The paper also 
introduces and implements the flux-based formulation to 
derive the finite element matrices for such nodeless 
variable element.  The flux-based formulation can 
simplify the finite element computational procedure as 
compared to the conventional finite element method. 
 To further improve the solution accuracy for both the 
steady-state and the transient heat transfer analyses, an 
adaptive unstructured meshing technique [4,7] is also 
incorporated.  The technique was first designed for 
analyzing hyperbolic problems, and has been modified 
recently for solving both the elliptic as well as the 
parabolic problems.  For time-dependent heat transfer 
problems, especially where the thermal loads (such as the 
heat source) have magnitudes which vary with time and 
move along the body of the structure, the mesh employed 
must adapt itself both in time and space (mesh 
movement) to accurately capture the transient 
temperature response.  The effectiveness of the combined 
procedure is demonstrated by the steady-state heat 
conduction analysis of a plate subjected to a highly 
localized surface heating. 
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2. Finite Element Thermal Analysis 
2.1 Governing Equations and Boundary Conditions 
 For heat transfer in the two-dimensional solid domain 

 bounded by the surface S as shown in Fig. 1, the 
temperature response is governed by the energy equation 
that can be written in the conservation form as, 

Q
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t
U  (1) 

Figure 1.  Domain and boundary conditions for  
two-dimensional heat transfer 

where the conservation variable U and the heat flux 
components E and F are, 

                    
x
TkqE x y

TkqF y
 (2) 

and Q is the heat source.  The heat flux components qx
and qy are related to the temperature gradients by 
Fourier's law.  The energy equation shown in Eq. (1) is to 
be solved together with appropriate initial condition of, 

yxTyxT ,0,, 0  (3) 
and the boundary conditions which are the surface 
temperature Ts and the surface heat flux qs that may 
consist of, 

t,y,xTTs 1  (specified temperature) (4a) 

qqs  (specified surface heating) (4b) 

TThq ss  (surface convection) (4c) 

44
rss TTq  (surface radiation) (4d) 

where qs is the conduction heat flux normal to the surface 
boundary, h is the convection coefficient, T  is the 
medium temperature for convection,  is the surface 
emissivity,  is the Stefan-Boltzmann constant, and Tr is 
the medium temperature for radiation. 
2.2 Nodeless Variable Flux-Based Finite Element  
      Formulation 
 Finite element equations derived in this paper are 
based on the use of the Taylor-Galerkin algorithm [2].  
The basic concept of the Taylor-Galerkin algorithm is to 
use the Taylor-series expansion in time to establish 
recurrence relations for time marching, and the method of 
weighted residuals with Galerkin's criterion for spatial 

discretization.  The flux-based formulation [3] is 
implemented to derive the finite element equations for the 
nodeless variable element.  For the triangular nodeless 
variable element, the distribution of temperature over the 
element is assumed in the form, 

tTyxNtTyxNtyxT
i

ii ,)(,,,
6

1

 (5) 

where yxN ,  consists of the element interpolation 
functions and tT  is the vector of the unknown 
temperatures and the nodeless variables.  The nodal 
temperatures are T1 through T3, while T4 through T6 are 
the nodeless variables.   The element interpolation 
functions, N1, N2, N3 are identical to the element 
interpolation functions L1, L2, L3 used for the standard 
three-node triangular element.  The nodeless variable 
interpolation functions implemented in this paper are, 

324 LLN  ; 315 LLN  ; 216 LLN  (6) 

 Each nodeless variable interpolation function varies 
quadratically along one edge and vanishes along the other 
edges as highlighted by the example of N6 in Fig. 2.  To 
derive the finite element matrices using the flux-based 
formulation, the method of weighted residuals is first 
applied to Eq. (1), 
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where   is the element domain.  The Gauss’s theorem is 
then applied to the flux derivative terms to yield, 
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where S is the element boundary.  Then, the first-order 
forward differencing is used to approximate the time 
derivative term as, 
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Substituting Eqs. (8)-(10) into Eq. (7) to yield, 
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 The unknown increments, U , are also 
approximated in the form, 

UNUNU
i
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where 
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Figure 2.  An example of N6 interpolation function  
 for a typical triangular element 

 In the above Eq. (13), the superscript n denotes the 
time step while the subscript i denotes the actual node 
and the nodeless variable.  In the flux-based formulation, 
the element flux distributions are computed from the 
nodal fluxes as, 
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where N  are the standard linear element interpolation 
functions, i.e., 321 LLL .  The nE  and nF  are the 
vectors of the nodal heat fluxes that relate to the 
temperature gradients through Fouries’s law which are 
given by, 
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 The above nodal fluxes depend on the nodal 
temperatures and need to update at every time step for the 
transient analysis.  Substituting Eqs. (12) and (14) into 
Eq. (11), the finite element equations are, 

nnn
y

n
x

n BRFDEDtUM 1 (16) 

where t  denotes the time step, nnn UUU 11

represents the vector of the increments of the nodal 
temperatures and the nodeless variables at the time step 
n+1.  The matrix M  on the left-hand-side of Eq.(16) is 
the mass matrix defined by, 

A

dANNM (17) 

where A is the element domain of integration.  The 
matrices xD  and 

yD  in Eq. (16) are, 

A
y

A
x

dAN
y
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x
ND

(18) 

 The element nodal vector R  associated with the 
heat source Q is, 

A

dAQNR (19) 

and the vector B  representing the boundary nodal 
vector is, 

S

S

qdANN

FmEldANNB
(20) 

where l and m are the components of a unit vector normal 
to the element boundary.  The vector q  appearing in the 
above Eq. (20) may be replaced by different types of 
boundary conditions as shown in Eqs. (4b-4d).  The 
interpolation functions in Eq. (20) needed for integration 
along the element side S are, 

L
xN 11 L

xN 2 L
x

L
xN 13

(21) 

where L is the length of element edge and x is the local 
coordinate along the edge starting from node 1 as shown 
in Fig. 3.  The finite element equations, Eq. (16) are 
derived for all the elements prior to assembling to yield 
the system equations.  Appropriate boundary conditions 
of the given problem are then applied.  Finally, the 
system equations are iteratively solved for the nodal 
temperatures and the nodeless variables. 

Figure 3.  Discretization of heat flux into the actual nodes 
and the nodeless variable on a typical element edge 

3. Adaptive Meshing Technique 
 There are two main steps in the implementation of 
the adaptive meshing technique, the first step is the 
determination of proper element sizes and the second step 
is the new mesh generation.   The temperature T is used 
as the indicator for computing proper element sizes at 
different locations in the domain.  As small elements 
must be placed in the region where changes in the 
temperature gradients are large, the second derivatives of 
the temperature at a point with respect to global 
coordinates x and y are needed.  Using the concept of 
principal stresses determination from a given state of 
stresses at a point [2,7], the maximum principal quantities 
are then used to compute the proper element size hi by 
requiring that the error should be uniform for all 
elements, 

constant22
maxminii hh  (22) 
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where the subscript i, i = 1, 2, denotes the direction of the 
maximum and minimum element length, and i is the 
higher principal quantity of the element considered, 

2

2

2

2

Y
T,

X
Tmaxi

 (23) 

 In Eq. (22), max is the maximum principal quantity 
for all elements and hmin is the minimum element size 
specified by users.  The node spacing hi is scaled 
according to the maximum value of the second 
derivatives of the temperature.  Such technique generates 
small elements in the regions with large change in the 
temperature gradients to increase the analysis solution 
accuracy.  At the same time, larger elements are 
generated in the other regions where the temperature 
profile is nearly uniform to reduce the computational time 
and the computer memory [4,7]. 
 It should also be noted that the finite element 
solutions are closely related to the quality of the element 
shapes.  Babuska and Aziz [8] demonstrated that the 
solution accuracy obtained from a mesh with triangles 
degrade seriously as the element largest angle is allowed 
to approach 180o.  The mesh adaptation technique [7] 
implemented in this paper assures to provide good quality 
of the element shapes for all the meshes generated.  The 
Taylor series expansion is used to interpolate the nodal 
solutions, such the temperature, from a previous mesh to 
a new mesh.  According to the quality criterion presented 
by Ruppert [9], the minimum angle ( ) for a triangle to 
assure good element aspect ratio is given by, 

sin
2

sin
1

shortest

longest

d
d  (24) 

where d denotes the distance.  The value of  equals to 
60o is used in this paper to calculate the element aspect 
ratio for producing the near-equilateral triangles in the 
process of generating all adaptive finite element meshes. 

4. Algorithm Evaluation

 To evaluate the performance of the nodeless variable 
finite elements using the flux-based formulation with the 
implementation of the adaptive meshing technique, two 
heat transfer problems that have exact solutions are 
presented.  These problems are: (1) a steady-state heat 
conduction in a square plate subjected to a highly 
localized surface heating, (2) a transient heat transfer in a 
long plate subjected to a moving heat source. 
4.1 Steady-State Heat Conduction in a Square Plate  
      Subjected to a Highly Localized Surface Heating
 The first example is a steady-state conduction heat 
transfer in a square plate due to a highly localized surface
heating.  The plate temperature distribution, which is a 
solution to the Poisson's equation with the boundary 
conditions of zero temperature along the four edges, is 
shown in Fig. 4.  The applied surface heating distribution 
is given by, 
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xxxyy
tk
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 (25) 

where q is the applied surface heating, k is the plate 
thermal conductivity, t is the plate thickness, and 

8.0)(2 yx .  The exact solution for the 
temperature distribution is, 

1tan11, yyxxyxT  (26) 

Figure 4.  Governing differential equation, boundary 
conditions, and temperature contours for a unit square 
plate subjected to a highly localized surface heating 

 The temperature contours for the exact solution are 
shown in Fig. 4.  The figure shows a steep temperature 
gradient along the s-direction at s equal to 0.8.  The 
magnitude of the temperature gradient is caused by the 
large value of the parameter  which is selected as 100 in 
this paper.  Both the temperature and the applied surface 
heating distributions along the plate diagonal in the s-
direction are shown in Fig. 5.  The figure shows the steep 
gradients and the rapid change of surface heating 
distribution in a narrow domain around s = 0.8. 

Figure 5.  Plate temperature and surface heating 
distributions along a diagonal direction of the plate 
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Figure 6.  Uniform and adaptive meshes with their 
temperature solution contours for a plate subjected  

to a highly localized surface heating 

Figure 7.  Comparison of the exact temperature  
solution and the predicted temperatures from  

the uniform and adaptive meshes 
 Both the adaptive meshes and a uniformly refined 
mesh are used in the analysis to evaluate the performance 
of the combined nodeless variable flux-based finite 
element method and the adaptive meshing technique.  

The nodeless variable finite element solutions on three 
adaptive meshes and the conventional finite element 
solution on a uniform refined mesh are shown in Fig. 6.
 The figures show the solution improvement of the 
combined nodeless variable finite element method and 
the adaptive meshing technique as the mesh adapts itself 
automatically to the solution behavior.  Figure 7 shows 
the comparison of the exact temperature and the predicted 
temperature solutions obtained from the nodeless variable 
finite element method using the adaptive meshes, and 
from the conventional finite element method using a 
uniform refined mesh.  The figure shows that the third 
adaptive mesh solution with 10,101 nodeless variable 
finite elements agrees very well with the exact 
temperature solution.  The figure also indicates that, in 
order to obtain the solution accuracy nearly at the same 
level as provided by the third adaptive mesh, a regular 
uniform mesh with at least 12,800 elements (81  81 
nodes) is required. 

4.2 Transient Conduction Heat Transfer in a Long  
      Plate Subjected to a Moving Heat Source
 To further evaluate the performance of the combined 
nodeless variable flux-based finite element method and 
the adaptive meshing technique, a transient conduction 
heat transfer in a long plate subjected to a moving heat 
source along an edge is considered.  Figure 8 shows the 
problem statement of a steel plate, with the dimensions of 
1"  0.02", subjected to an intense moving heat source 
along the top edge.  The heat source of 347.22 Btu/in2 is 
simulated as a square pulse of 0.01" width that moves at a 
speed of 5 in/sec. With the boundary condition of 0oF
along the other three edges as indicated in the figure, the 
exact plate temperature response was derived in form of 
infinite series as given by Eq. (27) [10], where the origin 
and the directions of the  – y coordinate system are 
shown in Fig. 8, q is the moving heat source, h is plate 
width, kcvH 2 ,  is the plate density, c is the 
specific heat, v is the velocity of the moving heat source, 
and k is the plate thermal conductivity.   

Figure 8.  Problem statement for transient thermal 
analysis of a plate subjected to a moving heat source 
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 The parameter  and n in Eq. (27) are defined by, 

2
2

22

4
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H

L
n

L
wn

n
 (28) 

where L is the plate length, and w is the width of the 
moving heat source simulated by a square pulse. 
 To clearly evaluate the performance and compare the 
solution accuracy obtained from the conventional and the 
nodeless variable flux-based finite element methods, the 
steady-state heat transfer case of the problem is first used.  
For the steady-state condition when the heat pulse is at 
the center of the plate, the transient temperature solution 
as shown in Eq. (27) reduces to, 

,31
22

)
2

(tanh)(sin8
n

steady n
L
hn

k
LqT  (29) 

Such steady-state solution behavior above represents a 
very high temperature with the magnitude of 581.82oF on 
the edge at the heat pulse impingement location.  The 
high temperature is localized with very steep distribution 
in an approximate narrow band of 0.01". 
 Figure 9 shows sections of the four finite element 
models used for predicting the plate temperature 
response.  The first three models are the structured mesh 
models with graded elements near the top edge.  These 
three models are the crude, medium, and fine finite 
element models with 1,600, 6,400, and 25,600 standard 
triangular elements, respectively.  The fourth model is an 
adaptive mesh model with 3,245 nodeless variable finite 
elements.  The table in Fig. 9 compares the predicted 
peak temperature response at the heat pulse impingement 
location obtained from the different finite element mesh 
models using the conventional and the flux-based finite 
element methods.  The values in the brackets denote the 
percentage error of the predicted peak temperature as 
compared to the exact solution.  The table shows that the 
adaptive mesh uses fewer elements than the fine 
structured mesh but can provide higher solution accuracy.  
The table also indicates that the nodeless variable flux-
based finite element method provides higher solution 
accuracy than the conventional finite element method for 
all the mesh models.  Figure 10 shows the predicted 
temperature contours on the entire plate obtained from 
the nodeless variable finite element method. 
 For the case of transient heat transfer analysis, the 
combined adaptive meshing technique and the nodeless 
variable flux-based finite element method is used to 
predict the temperature response.  The adaptive meshing 
technique is incorporated into the finite element method 
to adapt the mesh according to the transient solution 
behavior.  Figure 11 shows the adaptive meshes and their 
temperature solution contours at three typical times.  
Detail of the adaptive mesh near the heat pulse 
impingement location and the temperature contours are 
shown in the lower figures.  These figures show small 
clustered elements are generated in the region of high 
temperature gradients to capture the predicted peak 
temperature and the localized temperature distribution. 

At the same time, larger elements are generated in the 
other regions to reduce the computational time and the 
computer memory.  Such a typical transient adaptive 
mesh consists of approximately 2,000 triangles.  At the 
heat pulse impingement location, the predicted peak 
temperature is 572.62

oF as compared to 573.07oF of the 
exact solution by Eq. (26) with the difference of less than 
0.1%. 

Figure 9.  Comparison of the predicted peak temperatures 
obtained from the conventional and the nodeless  

variable finite element methods on both the  
graded structured and unstructured meshes 

Figure 10.  Adaptive mesh and temperature  
distribution contours for steady-state case 

 The comparison of the exact and the predicted 
temperature distributions along the top edge is shown in 
Fig. 12.  The figure shows that the temperature 
distribution obtained from the combined adaptive 
meshing technique and the nodeless variable flux-based 
finite element method is in very good agreement with the 
exact solution. 

 Crude structured mesh
      1,600 Triangles 
      1,005 Nodes 

 Medium structured mesh
      6,400 Triangles 
      3,609 Nodes 

 Fine structured mesh
      25,600 Triangles 
      13,617 Nodes 

 Adaptive mesh
      3,245 Triangles 
      1,723 Nodes 
      Quality = 98.92% 

Mesh  Temperature  (%Error) 
            Conventional FE     Nodeless FE 

   558.40 (4.26)  583.23 (0.26) 
  575.83 (1.09)  581.86 (0.0073) 
  580.32 (0.27)  581.83 (0.0018) 
  581.36 (0.09)  581.82 (0.0000) 
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t = 0.02 sec 

t = 0.06 sec 

t = 0.09 sec 

Figure 11.  Adaptive mesh movement and the  
transient temperature response as the heat  

source moves across the plate 
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Figure 12.  Comparison of the exact temperature  
solution and the predicted temperature distribution 

obtained from the combined adaptive meshing  
technique and the nodeless finite element method 

5. Conclusion 
 The nodeless variable flux-based finite element 
method was developed to analyze two-dimensional 
steady-state and transient heat transfer problems.  The 
nodeless variable finite element was described and their 
finite element equations were derived.  The flux-based 
formulation was applied to reduce the computational 
complexity as compared to the conventional finite 
element method.  The solution accuracy was further 
improved by implementing an adaptive meshing 
technique.  The technique places small elements in the 
regions with large changes of temperature gradients.  At 
the same time, larger elements are generated in other 
regions to reduce the total number of unknowns and the 
computational time.  The combined procedure was 
evaluated by two heat transfer problems that have exact 
solutions.  The problems are the steady-state heat 
conduction analysis of a plate subjected to a highly 
localized surface heating, and the transient thermal 
analysis of a plate subjected to a moving heat source.  

These problems show that the combined nodeless 
variable flux-based finite element method and the 
adaptive meshing technique can increase the analysis 
solution accuracy, and at the same time, reduce the total 
number of unknowns as compared to the standard 
nonadaptive mesh. 
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