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Abstract 
A numerical technique to investigate the transitional 

boundary layer flow over a flat plate subjected to 
freestream turbulence and non-zero pressure gradient is 
presented. The technique solves the full equations of fluid 
motion rather than the boundary-layer equations which 
are neglect the y-momentum equation and preserve the 
pressure variation only along the streamwise direction. In 
the present technique, the y-momentum equation remains 
employed to maintain the full-step computation and 
furthermore the pressure is treated as the flow variable 
and the effect of the pressure variation along the 
streamwise direction is deliberately converted to the 
variation of domain thickness along the same direction 
according to the test section of Coupland (1993), for 
T3C1, T3C2 and T3C4 cases. The boundary-fitted 
technique to transform the nonuniform grids to the 
uniform rectangular grids is used. The performance of 
two well-known turbulence models: the k-  model of 
Launder and Sharma (1974) and the SST turbulence 
model of Menter (1994), in predicting the transitional 
boundary layer is assessed against the experimental data.   

Keywords: Transition, Non-zero pressure gradient, 
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1. Introduction 
Flow transition plays an important role in the design 

and performance of turbomachinery applications and 
aerospace devices where the wall-shear-stress or wall-
heat-transfer or a combination of both is of interest. The 
boundary layer flows in turbomachines usually involve 
flow transition under the effects of several factors, such 
as freestream turbulence, pressure gradient, heat transfer, 
etc. [1]. In turbomachinery, the flow in the cascade 
passages can result in the boundary layer of the blade 
being transitional over 20-70% of the blade surface. The 
change in any properties related to the transition can 
therefore have a strong influence on the operation and 
hence the performance [2]. As a result, the performance, 
weight and cost associated with turbomachines can be 

affected by transition and the prediction of its behavior is 
an important element in analysis and performance 
evaluation and ultimately in the design of more efficient 
system [3].  

The transitional boundary layer flow over a flat plate 
subjected to freestream turbulence serves as a simple 
valuable tool in testing the performance of the turbulence 
models in predicting the transition behaviour. 
Interestingly, in the past, typical testing has been 
demonstrated on either the boundary layer flow with 
zero-pressure gradient or on complex geometry 
applications such as airfoil, aerospace devices, turbine 
blade, etc., in which case can directly employ the full 
equations of fluid motion: the continuity and momentum 
equations, without any modification to such equations. 
This is because the computational domain, together with 
the boundary conditions, for the boundary layer flow with 
zero-pressure gradient can easily be setup by which the 
computational domain can be constructed with the same 
thickness throughout in rectangular shape, and the 
pressure condition for all boundaries is the zero normal 
gradients. Unlike the case of the boundary layer with 
non-zero pressure gradient where the flow has been 
concerned with the pressure variation and, in the present 
work, such variation along the flow direction is known in 
advance from the experimental data. As a result, based on 
the idea of Prandtl (1904) by performing on the order-of-
magnitude assumptions, the three full equations of fluid 
motion, in case of two-dimensional flow analysis, will be 
reduced to Prandtl’s two boundary layer equations as 
follows: 

uu vu dUU
x y dx y

,    (1) 

0u v
x y

.      (2) 

It is clear that the features of such boundary-layer 
equations are quite different from the full equations of 
fluid motion in which the y-momentum equation is 
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neglected due to a very small magnitude of the v velocity 
compared with the u velocity and the pressure is also 
assumed to be varied only along the streamwise direction 
which is known in advance from Bernoulli’s equation 
applied to the outer inviscid flow. As a result, the full-
step computation cannot be performed on the boundary-
layer equations because the number of the equations in 
the boundary-layer equations is not sufficient to be 
solved. However, deciding to perform the calculation 
with the full equations of fluid motion to maintain the 
full-step computation may not take into account the 
pressure gradient variation, which is exactly known in 
advance, in the momentum equations directly. This is 
because if the pressure field is correctly known, the 
resulting velocity will satisfy the continuity and the 
pressure correction which is used to correct the pressure 
and velocity fields in the SIMPLE algorithm is not vital. 
Unfortunately, this concept is actually incorrect because 
the pressure correction is directly related to the continuity 
which is always a vital part of any fluid-flow analysis. 

In the present study, the full equations of fluid 
motion are investigated rather than the simplified form of 
the boundary-layer equations. The y-momentum equation 
is also preserved in the computation algorithm and the 
pressure is treated as the flow variable rather than 
imposed as the source term in the momentum equations 
even though its variation is known in advance form the 
experimental data. The effect of the pressure variation 
along the streamwise direction has been converted to the 
variation of domain thickness along the same direction. 
The performance of two popular turbulence models: the 
k-  model of Launder and Sharma [4] and the SST 
turbulence model of Menter [5], in predicting the 
transition are assessed in comparison with the 
experimental data of Coupland [6] in cases of T3C1, 
T3C2, and T3C4. 

2. Turbulence Models  
The turbulence models investigated in the present 

study are the k-  model of Launder and Sharma [4] and 
the SST model of Menter [5]. The transport equations of 
both models and the eddy viscosity models are written 
below. 

2.1 The k-  Model of Launder and Sharma (1974) 
 The low-Reynolds-number k-  model of Launder and 
Sharma [4] is the most widely used. The model is very 
sophisticated and consists of two transport equations, 
which must be solved: one for the turbulent kinetic 
energy, k, and the other for the rate of dissipation of 
turbulent kinetic energy, . This model is generally 
derived from high-Reynolds-number model by 
introducing damping functions to account for the effect of 
the wall on turbulence. The assumption of this model is 
based on the Boussinesq hypothesis in which the 
turbulent stress is linearly related to the mean rate of 
strain as in a laminar flow, that is, the turbulent viscosity 
is presumed to be isotropic (the same in all directions). 
Unfortunately, this assumption fails in many categories of 
flow such as flows with boundary layer separation and 

reattachment, secondary flow in duct and in 
turbomachinery, etc., where it leads to inaccurate flow 
prediction. A well-known shortcoming of this model 
stems largely from the turbulence being represented by its 
kinetic energy, which is scalar, and that the turbulent 
kinetic energy k is not the appropriate velocity scale close 
to solid boundaries. The transport equations for the 
kinetic energy and the dissipation rate of turbulence for 
this model are as follows: 

( )j t
k w

j j k j

u k k P
x x x

,  (3) 

1 1

2

2 1

j t
k

j j j

u
C f P

x x x k

C f
k

.   (4) 

The eddy viscosity is obtained from 

2 /t C f k .     (5) 

The explicit wall terms are given by 

2
2

2 i
w t

j k

u
x x

 and 
2

2

j

k
x

.  (6) 

The model constants and damping functions are as 
follows: 

0.09C , 1 1.44C , 2 1.92C ,     (7) 
1.0k , 1.3 ,     (8) 

2exp 3.4(1 0.02Re )tf ,     (9) 

1 1f , 2
2 1 0.3exp(Re )tf , (10) 

where Ret= k2/( ) is the turbulent Reynolds number. 
 The boundary conditions for the turbulence kinetic 
energy and its dissipation rate at solid wall are k=0 and 
=0.

2.2 The SST Model of Menter (1994) 
 The k- Shear Stress Transport (SST) turbulence 
model of Menter [5] merges the k- model of Wilcox 
with a high-Reynolds-number k-  model (transformed 
into the k-  formulation). The SST model seeks to 
combine the positive features of both models. Therefore, 
the k-  approach is employed in the viscous sublayer of 
the boundary layer. The reason is that the k-  model 
needs no damping function. This leads, for the same 
degree of accuracy, to the significantly higher numerical 
stability in comparison to the k-  model. Furthermore, the 
k-  model is also utilized in the logarithmic part of the 
boundary layer, where it is superior to the k- approach in 
adverse pressure gradient flows and compressible flows. 
On the other hand, the k-  model is strongly sensitive to 
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the freestream value of . The k-  is also used in free-
shear layers since it represents a fair compromise in 
accuracy for wakes, jets, and mixing layers. The 
disadvantage of the SST model is that distances to the 
nearest wall have to be known explicitly. This requires 
special provisions on multiblock structure or on 
unstructured grids. The transport equations for the kinetic 
energy and its specific dissipation rate of turbulence for 
the SST model are as follows: 

( )j
k k t

j j j

u k kP k
x x x

, (11) 

2

2
1

( )

2(1 )

j
t k

j j j t

j j

u C P
x x x

kf
x x

. (12) 

The eddy viscosity is obtained from 

1

1 2max ,t
a k
a f

, (13) 

where the magnitude of vorticity =||curl v||2 and the 
auxiliary function f2 is given by;  

2
2 2tanh(arg )f  , (14) 

2 2

2 500arg max ,
0.09

k
d d

.

The model constants are as follows: 

a1=0.31, =0.09. (15) 

The coefficients of the SST model C , , k and  are 
obtained by blending the coefficients of the k-   model, 
denoted as 1, with the coefficients of the k-  model, 
denoted as 2. The corresponding relation is 

1 1 1 2(1 )f f . (16) 

The coefficients of the inner model (k- ) and of the outer 
model (k- ) are given in Equations (17) and (18) 
respectively,

k1=0.85, 1=0.500, 1=0.0750, C 1=0.533,  (17) 
k2=1.00, 2=0.856, 2=0.0828, C 2=0.440. (18) 

The function f1 which blends the model coefficients of the 
k-  model in boundary layers with the transformed k-
model in free-shear layers and freestream zones, is 
defined as 

4
1 1tanh(arg )f , (19) 

2
1 2 2

4500arg min max , ,
0.09 k

kk
d d CD d

, (20) 

where d is the distance to the closest wall and  CDk  is 
the positive portion of the cross-diffusion term in the -
equation 

20
2

1max 2 ,10k
j j

kCD
x x

. (21) 

The boundary conditions for the turbulence kinetic 
energy and its specific dissipation rate at solid wall are 

0k  and 2
1 1

610
d

 (22) 

where d1 is the distance of the first node (cell center 
node) from the wall. The grid has to be refined such that 
y+<0.3.

3. Numerical Method  
Computations are performed by an elliptic solver 

which solves the mean-flow equations and turbulence 
models using the second-order TVD-upwind scheme 
based on Van Leer’s flux limiter [7]. The transport 
equations defining the problem are discretized by the 
finite volume method based on non-staggered grid 
arrangement, i.e., all variables are stored at the same 
points. With this approach, the problem domain is 
divided into a number of small control volumes, the 
boundaries of control volumes are positioned mid-way 
between adjacent nodes and thus each node is surrounded 
by the control volume. The governing equations have 
been integrated over the control volume to yield the 
discretized equations at its node. The diffusive and source 
terms are discretized by using the second-order central 
differencing scheme and the nonlinear convective term is 
discretized by using the first-order upwind scheme.  

The SIMPLE algorithm is employed to solve all 
transport equations. The calculation procedure is started 
with initializing the field variables with a small value 
except for the pressure that is initialized zero. To initiate 
the SIMPLE calculation process, the pressure field is 
guessed and employed to sequentially solve the 
momentum equation to yield the velocity field. The 
velocity field is used to determine the mass fluxes 
through each cell face and subjected to the constraint that 
it must satisfy the continuity equation. In this step, 
because of the use of non-staggered grid arrangement, the 
Rhie-Chow interpolation is used to determine the mass 
fluxes to take into account for the nonlinear case of the 
pressure field to avoid the checker-board effect. The 
pressure-correction equation is performed by using the 
mass imbalance arising from the incorrect velocity field 
as the source term so that the pressure-correction field 
can be obtained at all nodes. Once the pressure-correction 
field is known, the corrected pressure and velocity fields 
can be obtained by updating them with the pressure 
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correction. Later, the equations of scalar variables, k and 
, are respectively solved to yield the scalar fields.  

 During the SIMPLE iteration, the discretized 
equation is numerically solved by using the relaxation of 
SIP (Strongly Implicit Procedure) method of Stone 
(1968). The number of sweeps for each equation solved 
should not be the same. Only one sweep is sufficient for 
momentum and turbulent quantities equations but, for the 
pressure correction, 5-10 sweeps are required. All 
variables will be weighted with the appropriate values of 
under-relaxation factor to avoid the solution wiggle. In 
this work, the value of 0.3 is used to stabilize all 
variables, except for the pressure correction the value of 
0.1 is used. 

3.1 Boundary-Fitted Grid Technique 
 In case of zero pressure gradient boundary layer 
flow, the computational domain can be selected to be 
rectangular in shape where the interior grid points are 
distributed along the grid lines. Therefore, the grid points 
can be identified easily with reference to the appropriate 
grid lines. This type of grid is known as the structured 
grid. Unfortunately, the physical domain of the 
transitional boundary layer flow in case of non-zero 
pressure gradient is not rectangular due to the change of 
the cross sectional area along the flow direction to satisfy 
the pressure variation in the same direction which is 
already known in advance from the experimental data. 
Therefore, imposing a rectangular computational domain 
on such a physical domain will require some sort of 
interpolation for the implementation of the boundary 
conditions. Since the boundary conditions have a 
dominant influence on the solution of the equation, such 
an interpolation causes inaccuracies at the places of 
greatest sensitivity. To overcome these difficulties, a 
transformation from the physical space (x,y) to the 
computational space ( , ) is adopted here. The 
transformation is accomplished by specifying a 
generalized coordinate system which will map the 
curvilinear grid system in the physical space to a 
rectangular uniform grid system in the computational 
space [8]. In the present work, the transformation 
technique used here is the so-called inverse 
transformation. With this technique, the transformed 
governing equation will be expressed in terms of the 
inverse metrics such as x/ , y/  and the Jacobian J.
For all convection-diffusion problems, the transformed 
governing equation for the property can be formulated 
and written in the following general form:       
   
u v

J J

D JS

 (23) 

where  

D
J J

.  (24) 

x x y y , x x y y ,

x x y y , (25) 

y xu u v , y xv u v . (26) 

In the present study, the SIMPLE algorithm is 
employed to solve all transport equations as already 
mentions above. Since this algorithm deals with the 
continuity via the pressure correction formula which is 
expressed in form of the central difference formulation of 
the Poisson equation, not in the general form of the 
convection-diffusion transport equation as in the 
momentum and turbulence transport equations. Hence, to 
transform the pressure-correction equation from the 
physical space to the computational space, a new 
derivation of such an equation has been deliberately 
performed. Eventually, the general form of the pressure 
correction equation can be written in the following form:      

P P W W E E N N S S ma p a p a p a p a p B  (27) 

with the coefficients and source terms are given below: 

2
,( )W u wa B , 2

,( )E u ea B ,   
2

,( )S v sa C , 2
,( )N v na C , (28) 

( ) ( ) ( ) ( )m w e s nB u u v v ,

where 

1 1 1
u u v

P P

y y x xB
J a a

, (29-1) 

1 1 1
v u v

P P

y y x xC
J a a

. (29-2) 

and the Jacobian J is denoted by
   

dx dy
d d

J
dx dy
d d

 (30) 

 Actually, the transformation of flow problems from 
the physical space to computational space always results 
in the complexity of the governing equation form. 
However, the advantage of this method is that the grid 
points greatly fall on the curvature surfaces of the domain 
boundaries which are convenient in specifying the 
boundary condition. 
   
3.2 Description of Test Cases 

Test cases presented in this paper are the ERCOFTAC 
T3-series of flat plate experiments. All test cases are 
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commonly used as benchmarks for the transition 
prediction by turbulence models. All test cases (T3C1, 
T3C2 and T3C4) have the non-zero pressure gradient 
with the freestream turbulence intensity of 7.5%, 3.0% 
and 3.0% respectively corresponding to the transition in 
bypass mode. T3C1 and T3C2 cases are the test cases 
specially designed to test the ability of turbulence models 
in predicting the transition with the continuous variation 
of pressure gradients representing an aft-loaded turbine 
blade [1]. The T3C4 test case consists of a flat plate with 
favorable and adverse pressure gradient imposed by the 
opposite converging/diverging wall. It is usually used to 
test the model ability to predict the separation induced 
transition [3]. Domain of computation used here is the 
flat plate of 1.5 m long, and the Reynolds numbers based 
on the plate length, ReL, are 5.9 105, 5.4 105 and 1.2 105

for T3C1, T3C2 and T3C4 cases, respectively. The 
thickness of the domain at the entrance region before the 
leading edge is 0.22 m. and then varies along the 
streamwise direction corresponding to the pressure 
gradient variation afterward. 

The computational domain begins at 0.15 m. upstream 
of the plate leading edge to facilitate an unambiguous 
specification of freestream conditions. This is vital 
because it enables the uniform profiles of k and  to be 
assigned. If one starts computations at the plate leading 
edge, the predicted transition point is strongly dependent 
on the assumptions made for the way k and  vary across 
the boundary layer [9]. In computations, a variety of grid 
densities is explored by performing a grid-independent 
check, in which the grid spacing is decreased by half in 
both directions, and a mesh of 155 (streamwise)  100 
(expanding from wall to freestream) H-type grid is 
adopted for all test cases. In all cases, the first node 
adjacent to the wall is located at y+ below 0.3. 

In this study, incompressible flow is considered so that 
the fluid density and molecular viscosity are constant 
which are 1.2 kg/m3 and 1.8 10-5 kg/m s respectively. 
The SIMPLE algorithm is employed to solve all transport 
equations. The initial streamwise mean velocity profile is 
the Blasius velocity profile, and the inlet conditions are 
prescribed to reproduce the experimental decay of the 
freestream turbulence intensity. The isotropic turbulence 
is assumed, so that the inlet turbulence kinetic energy is 
obtained from the experimental inlet freestream 
turbulence intensity, Tuin, and the inlet viscosity ratio, 
R ,= t/ , is specified in order to mimic the 
experimentally measured decay of the freestream 
turbulence intensity. Hence, the inlet conditions of the 
turbulent variables are calculated from the following 
relationships: 

t R , 2(3 / 2)( )in ink Tu U , / tk ,
2 / tC k , (31)

where Tuin denotes the inlet freestream turbulence 
intensity (%), and Uin is the inlet velocity. For the outlet 
boundary, all variables are extrapolated from nodes inside 
the domain to the outer boundaries. Details of inlet 

conditions of all test cases are given in Table 1, and the 
inlet conditions of turbulent variables are obtained by 
matching the decay of freestream turbulence intensity 
with the experimental data show in Fig. 1.

Table 1. Summary of inlet conditions of all test case 
Case Uin (m/s) Tuin (%) t/
T3C1 5.9 7.5 44.0 
T3C2 5.0 3.0  7.0 
T3C4 1.2 3.0  2.0 

 Generally, the appropriate value for the inlet 
viscosity ratio matching with the experimental decay of 
the freestream turbulence intensity is not too much 
difficult to observe, and normally such a value can be 
found in less than four times by numerical experiments. 
The more difficult task than the previous step is to 
observe the appropriate domain shape to match the 
experimental data of the pressure gradient variation of 
each test case. The possible way to find that shape, which 
is used in the present work, is to compute the mass flux 
through each cross section of the domain using the 
velocity values at freestream which is known from the 
experimental data. Using the concept of mass balance, the 
thicknesses of the cross sections along the flow direction 
can simply be computed and are shown in Figs. 2-4 (a).        

4. Results and Discussion 
The predicted results of two turbulence models are 

compared with the experimental data of the momentum 
thickness Reynolds number, Re , the skin friction 
coefficient, Cf, and the shape factor, H. (i) The 
momentum thickness Reynolds number is directly related 
to the momentum thickness of the boundary layer which 
indicates the development of the boundary layer. In case 
of the boundary layer flow on a flat plate, the boundary 
layer is laminar in the entrance region of the flat plate, 
and becomes transitional and then turbulent. According to 
Thwaites’ method [10], the momentum thicknesses of 
laminar boundary layers can be determined from 
=0.671x/Re1/2, displayed by the dash lines in Fig. 2-4 

(b). For the profile of the momentum thickness Reynolds 
number along the flat plate, the transition starts at the 
point where the profile deviates from the laminar line, 
and ends at the point where the profile touches the 
turbulence line. (ii) The skin friction coefficient is an 
important factor for indicating the starting and ending 
points of transition, and also indicates the growth rate 
characteristic of transition leading to the length of 
transition to be found. The variation of the skin friction 
coefficient along the flat plate is usually displayed with 
respect to the Reynolds number, and the linear-scale plot 
is displayed in this work. The start and end of transition 
occur at the points where the skin friction coefficient 
profile deviates from the laminar value and approaches to 
the turbulent value respectively, and the variation 
between these two points indicates the growth rate and 
length of transition (the more the rapid growth rate; the 
shorter the transition length). (iii) The shape factor 
defined as the ratio of the displacement thickness to the 
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momentum thickness in the boundary layer (H= */ )
describes the influence of the freestream turbulent eddies 
on transition. Moreover, it indicates if the boundary layer 
is separated or has the tendency to separate. Moreover, 
the shape factor also indicates the region where the 
boundary layer tends to be turbulent. A decrease in the 
shape factor implies that the transition to turbulent 
boundary layer is about to occur.  

For T3C1 case, the flow is subjected to the freestream 
turbulence intensity of 7.5% at the inlet, and the 
comparison of the predicted results with the experimental 
data is shown in Fig. 2. The SST model gives no flow 
transition and remains fully turbulent flow for the entire 
flow regime. This model gives the immediate transition 
to turbulence at the leading edge of the flat plate showing 
almost no laminar zone. This is because the predicted 
profile of momentum thickness Reynolds number 
deviates from the experimental one at the leading edge 
location. As a result, the skin friction coefficient 
predicted by this model follows the turbulent skin friction 
coefficient, and the immediate decay of the shape factor 
at the leading edge is found. With the Launder and 
Sharma model, the model gives good predicted results for 
the boundary layer development and then reproduces the 
shape factor profile fairly well but gives too early 
changes in the skin friction coefficient. 

For T3C2 case, the flow is subjected to the freestream 
turbulence intensity of 3.0% at the inlet and the 
comparison of the predicted results with the experimental 
data is shown in Fig. 3. As in the previous case, the SST 
model shows the flow transition at leading edge without 
displaying any laminar behaviour. With the Launder and 
Sharma model, the model reproduces the developing 
layer fairly well but gives too early changes in the skin 
friction coefficient and shape factor.  

For T3C4 case, the flow is subjected to the freestream 
turbulence intensity of 3.0% at the inlet and the 
comparison of the predicted results with the experimental 
data is shown in Fig. 4.  The SST model again gives the 
same conclusion as in the previous two cases, that is, it 
cannot detect any effect of transition, and therefore gives 
an immediate transition to turbulence at the leading edge 
of the flat plate. With the Launder and Sharma model, the 
model shows a good result for almost all upstream 
regions, but, for downstream region near the exit of the 
flat plate, the predicted results deviate from the 
experimental data. This downstream region is affected by 
the adverse pressure gradient leading to the reverse flow 
and such flow usually fails to be predicted by this model.      

5. Conclusion 
 The method of converting the effect of the pressure 
gradient variation to the domain thickness variation has 
been investigated in the transitional boundary layer with 
non-zero pressure gradient. The method solves the full 
equations of fluid motion using the boundary-fitted grid 
transformation technique. Two turbulence models: the 
SST model of Menter [5] and the k-  model of Launder 
and Sharma [4], are implemented and their abilities are 
assessed. The SST model gives fully turbulent results for 

all cases and cannot detect any transition effect. The 
Launder and Sharma model gives good results for T3C1 
and T3C2 cases but predicts the transition onset too early 
and the transition length too short. For T3C4 case, the 
Launder and Sharma model can predict the reverse flow 
behaviour which appears near the end region of the flat 
plate but cannot detect the transition behaviour accurately 
in such region.
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Fig. 1. Comparison of the measured freestream 
turbulence intensities with the numerical results for (a) 
T3C1, (b) T3C2, and (c) T3C4 cases. 
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Fig. 2. (a) Freestream velocity and domain thickness, (b) 
Momentum thickness Reynolds number, (c) Skin friction 
coefficient, and (d) Shape factor for T3C1 case. 
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Fig. 3. (a) Freestream velocity and domain thickness, (b) 
Momentum thickness Reynolds number, (c) Skin friction 
coefficient, and  (d) Shape factor for T3C2 case. 
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Fig. 4. (a) Freestream velocity and domain thickness, (b) 
Momentum thickness Reynolds number, (c) Skin friction 
coefficient, and (d) Shape factor for T3C4 case. 
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