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Abstract
A finite element method for transient one-

dimensional conduction heat transfer problems is
presented.  Space-time nine-node rectangular elements
were employed with the weighted residuals method in the
solution procedures.  The corresponding finite element
computer program was developed and verified by
example problems with and without instantaneous pulse
sources. The pseudo-time intervals were inserted in the
time marching process when instantaneous pulse sources
exist.  All numerical results showed excellent agreements
with analytical solutions.

Keywords: finite element, transient, conduction, nine-
node rectangular elements.

1. Introduction
Steady and transient conduction heat transfer

problems are basic problems in the subject of heat
transfer.  They were studied extensively from the origin
of the science of heat transfer.  Ozisik [1] compiled the
standard analytical methods for exact solutions of these
problems.  Sturm-Liouville theory, Duhamel’s theorem,
Green’s function, Laplace’s transform, and integral-
transform technique were mentioned.  Also, the finite
difference method was introduced.  Zienkiewicz and
Taylor [2] summarized the approximation methods for
time-dependent field problems.  The method of semi-
discretization, single-step methods, and multi-step
methods were explained.  All of the methods in these two
references can fulfill the general purposes of engineers
and researchers in solving conduction heat transfer
problems.

Nowadays, the approximation methods are very
popular because they can cope with the difficulties that
make the analytical methods fail or be clumsy such as
complex geometry, various boundary conditions, the
occurrence of pulse sources, and nonhomogeneities.  In
the last few decades, countless researches on the
approximations of conduction heat transfer equation by
finite element method have been published.  The concept
of weighted-residuals finite element has been utilized
only in spatial domain while the recurrence formulae
have been employed in time domain to reduce the

economical efforts in obtaining the numerical solutions.
The recent examples of attacking the heat conduction
problems by the finite difference in time domain are the
papers published by Ilinca and Hetu [3], Chen and Tong
[4], and Wang and Mai [5].  However, the concept of
weighted-residuals method can be directly applied to
spatial and time domain.

The main objective of this paper is to present a finite
element method for solving transient one-dimensional
conduction heat transfer problems based on space-time
nine-node rectangular elements as the representative
application of weighted-residuals finite element to spatial
and time domain.  The second-order discretization on
spatial and time domain can be achieved simultaneously.
The corresponding finite element computer program that
can be executed on standard personal computer was
developed.  Numerical solutions obtained from the
developed finite element computer program were verified
by comparing with the analytical solutions provided by
VanSant [6].

2. Governing Equations
The differential equation of heat conduction for a

stationary, homogeneous, isotropic solid occupying the
region  with heat generation within its for 0t  [1] is

yx z
p

qq q Tq c
x y z t

(1)

where qx, qy, qz are heat flux in x-, y-, and z-direction, q
is rate of heat generation per unit volume,  is the solid
density, cp is the specific heat at constant pressure of
solid, T is the solid temperature, and  is the spatial
domain occupied by the conducting solid.

From Fourier’s law of conduction for isotropic
materials, heat fluxes in x-, y-, and z- direction are

, ,x y z
T T Tq k q k q k
x y z

(2)

where k is the thermal conductivity of solid.
A set of boundary conditions and an initial condition

must be prescribed before finding the solutions.  The
initial condition specifies the temperature distribution
within the spatial domain at the origin of time coordinate.

( , , , ) ( , , )T x y z t F x y z (3)
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on region  at 0t .
The boundary conditions specify one or combination

of the following conditions on the boundary surface of
spatial domain.
Boundary condition of first kind:

( , , , ) ( , , , )T x y z t f x y z t (4)
on  for 0t , where  is the boundary surface of spatial
domain.
Boundary condition of second kind:

( , , , )Tk f x y z t
n

(5)

on  for 0t , where n is the outward normal coordinate.
Boundary condition of third kind:

Tk hT hT
n

(6)

on  for 0t , where h is the convection coefficient and
T  is the ambient fluid temperature.

For one-dimensional energy transfer, the differential
equation of heat conduction becomes

x
p

q Tq c
x t

(7)

in 0 x l  for 0t .
The set of boundary conditions and an initial

condition described for this case are:-
Boundary conditions:

( , , , )i i ij j
i

Tk hT f x y z t
n

(8)

on i where ij is Kronecker delta, i,j = 1,2.
Initial condition:

( , ) ( )T x t F x (9)
for 0 x l  at 0t .

3. Finite Element Formulation
To distinguish the concept of directly applied

weighted-residuals methods to the conduction heat
transfer equation from other well-established standard
methods, the nine-node rectangular elements are selected
for this problem.  Figure 1 shows that a nine-node
rectangular element is originated from a series of one
three-node line element in time domain.  Node numbering
is detailed in Figure 2.  The interpolation functions for
element of this type are constructed as follow [7].

The shape functions of line element with length a are

1 21 ,x xL x a L x a (10)
The parabolic interpolation functions for steady

problems are constructed by using the combination of the
complete set of second-order polynomials in the form

2 2
1 1 2 1 2 3 2( ) x x x xT x L L L L (11)

If the problems are unsteady, the complete set of
second-order polynomials in spatial and time domain is

2 2 2 2 2
1 1 1 2 1 1 2 3 1 2( , ) x t x t t x tT x t L L L L L L L

       2 2
4 1 2 1 5 1 2 1 2 6 1 2 2x x t x x t t x x tL L L L L L L L L L

2 2 2 2 2
7 2 1 8 2 1 2 9 2 2x t x t t x tL L L L L L L (12)
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Figure 1.  A nine-node rectangular element.
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Figure 2.  Node numbering of a nine-node rectangular
element.

where

1 21 ,t tL t t L t t (13)
After finding nine coefficients from nine conditions

at each node and rearranging, the temperature distribution
on an element is

( , ) i iT x t N T (14)
where 1, 2,3,...,9i  and

1 1 1 2 1 1 2

2 2 2 1 1 1 2

3 2 2 1 2 2 1

4 1 1 2 2 2 1

5 1 2 1 1 2

6 2 1 2 2 1

7 1 2

( , ) ( ) ( )
( , ) ( ) ( )
( , ) ( ) ( )
( , ) ( ) ( )
( , ) 4 ( )
( , ) 4 ( )
( , ) 4

x x x t t t

x x x t t t

x x x t t t

x x x t t t

x x t t t

x t t x x

x

N x t L L L L L L
N x t L L L L L L
N x t L L L L L L
N x t L L L L L L
N x t L L L L L
N x t L L L L L
N x t L L 2 2 1

8 1 1 2 1 2

9 1 2 1 2

( )
( , ) 4 ( )
( , ) 16

x t t t

x t t x x

x x t t

L L L
N x t L L L L L
N x t L L L L

(15)

The method of weighted-residuals is applied by
weighting the differential equation of one-dimensional
heat conduction with the interpolation functions of nine-
node rectangular element to obtain the equations

0 0e e

t t
x

i e i e
qN d dt N q d dt
x

            
0 e

t

i p e
TN c d dt
t

(16)

where 1, 2,3,...,9i .
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After applying integration by parts and Gauss
theorem, equation (16) becomes

0 0

( ) ( )
t t

i x lef t i x rightN q A dt N q A dt

0 0 0 0

t a t a
i

x i
N q Adx dt N q Adx dt
x

       
0 0

t a

i p
TN c Adx dt
t

(17)

where A is the cross-sectional area at any point of the
element, ( )x lef tq A  is the amount of heat transfer at the left
end of element, and ( )x rightq A  is the amount of heat
transfer at the right end of element.

The amount of heat transfer at both ends of element
can be computed with the aid of the constructed
interpolation functions in the following manners.

1 1( ) ( ) (0, )x lef t x tq A q A N t

8 8 4 4( ) (0, ) ( ) (0, )x t x tq A N t q A N t (18)

2 2( ) ( ) ( , )x right x tq A q A N a t

6 6 3 3( ) ( , ) ( ) ( , )x t x tq A N a t q A N a t (19)
Substituting Fourier’s law of conduction into

equation (17) and rearranging result in the finite element
equations in the form

[ ] { } [ ] { } { } { }c e e k e e g e s eK T K T Q Q (20)
where [ ]c eK  is the element capacitance matrix, [ ]k eK  is
the element conductance matrix, { }eT  is the vectors of
element unknown temperatures, { }g eQ  is the element
load vectors from heat generation, and { }s eQ  is the
element load vectors from heat transfer at the boundary
surface.

Assuming that all solid properties are constants and
all elements in computational domain have constant
cross-sectional areas, the closed-forms of the element
matrices are

12 3 1 4 6 4 2 16 8
3 12 4 1 6 16 2 4 8
1 4 12 3 2 16 6 4 8

4 1 3 12 2 4 6 16 8
[ ] 6 6 2 2 48 8 16 8 64

180
4 16 16 4 8 0 8 0 0
2 2 6 6 16 8 48 8 64
16 4 4 16 8 0 8 0 0
8 8 8 8 64 0 64 0 0

p
c e

c Aa
K

(21)

28 4 1 7 32 2 8 14 16
28 7 1 32 14 8 2 16

28 4 8 14 32 2 16
28 8 2 32 14 16

[ ] 64 16 16 16 32
90

112 16 16 128
64 16 32

112 128
Sym 256

k e
kA tK

a

(22)

{ } 1 1 1 1 4 4 4 4 16
36

T
g e

q AaQ t

(23)
1 8 4

2 6 3

2 6 3

1 8 4

2 6 3

1 8 4

4( ) 2( ) ( )
4( ) 2( ) ( )
( ) 2( ) 4( )
( ) 2( ) 4( )

{ } 0
30

2( ) 16( ) 2( )
0

2( ) 16( ) 2( )
0

x x x

x x x

x x x

x x x

s e

x x x

x x x

q A q A q A
q A q A q A
q A q A q A
q A q A q A

tQ
q A q A q A

q A q A q A

(24)
When both ends of the element are subjected to

convection by the ambient fluid, two terms are
incorporated into the finite element equations to yield
[ ] { } [ ] { } [ ] { }c e e k e e h e eK T K T K T

                         { } { } { }g e s e h eQ Q Q (25)
where [ ]h eK  is the element convection matrix and { }h eQ
is the element load vectors from convection.  The closed-
forms of these two matrices are
For left end,

4 0 0 1 0 0 0 2 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
4 0 0 0 2 0

[ ] 0 0 0 0 0
30

0 0 0 0
0 0 0

16 0
Sym 0

h e
hAK t

(26)

{ } 1 0 0 1 0 0 0 4 0
6

T
h e

hATQ t

(27)
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For right end,
0 0 0 0 0 0 0 0 0

4 1 0 0 2 0 0 0
4 0 0 2 0 0 0

0 0 0 0 0 0
[ ] 0 0 0 0 0

30
16 0 0 0

0 0 0
0 0

Sym 0

h e
hAK t

(28)

{ } 0 1 1 0 0 4 0 0 0
6

T
h e

hATQ t

(29)
In fact, the convection heat transfer can occur only at

the ends of the computational domain.  Thus, the finite
element matrices associated with convection should be
computed and incorporated after the assembling of the
system equations.  The final form of the system equations
can be written as

[ ] { } { } { } { }sys sys g sys s sys h sysK T Q Q Q (30)

where [ ] [ ] [ ] [ ]sys c sys k sys h sysK K K K , { }g sysQ  is the

system load vector from heat generation, { }s sysQ  is the

system load vector from point heat sources, and { }h sysQ  is
the system load vector from convection.

After imposing the boundary conditions and the
initial condition, the preconditioning conjugate gradient
method [8] is applied to solve the system equations with
the stopping criteria of 10-6 in 2-norm relative residuals.

The described procedures are used in the developing
of finite element computer program that can be executed
on standard personal computers.  The numerical solutions
obtained from the developed finite element computer
program are verified by comparing with the analytical
solutions given by VanSant [6] in the following section.

4. Numerical Results and Discussions
The solid properties used in all calculations are the

properties of AISI 4030 steel at 300 K [6] except the
specific heat at constant pressure, cp, which is one-
thousandth of real value.  The cross-sectional area and the
length of the conducting solid are 0.1 m2 and 1 m.  This
set of numerical values results in the problems that reach
to steady state rapidly.  Six example problems with 100
elements per time step are carefully selected to validate
the developed finite element computer program.  In first
three example problems, no pulse sources exist and the
rate of heat generation is set to be 10 W/m3.  In last three
example problems, there is no heat generation but the
instantaneous pulse sources occur at the beginning of the
time coordinate.  The pulse strength 0Q  is set to be 40

J/m2 and 0Q  is 200 J/m2.  All example problems are
detailed below.

Case I
The physical situation of transient heat conduction with
specified temperatures at both ends is shown in Figure 3.
Initial Condition:

0( ,0) 0T x T  for l x l
Boundary Conditions:

0( , ) ( , ) 0T l t T l t T  when 0t

x0q0( , )T l t T 0( , )T l t T

0( ,0)T x T

l l

Figure 3.  Physical situation of case I.
The analytical solution is given by [6]

220
2 3

00

1 ( 1)(1 ) 2 cos( )
2

n

n
Fo

n
n n

T T X e X
q l k

(31)

where 2Fo t l  is Fourier number, pk c  is the
thermal diffusivity, (2 1) 2n n , and X x l .
The numerical and analytical solutions are plotted in
Figure 4.
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Figure 4.  Numerical and analytical solutions of case I.

Case II
The physical situation of transient heat conduction with
convection at both ends is shown in Figure 5.
Initial Condition:

( ,0) 0T x T  for l x l
Boundary Conditions:

( ) 0k T n hT hT  at x l  when 0t

x0q,h T

( ,0)T x T

l l

,h T

Figure 5.  Physical situation of case II.
The analytical solution is given by [6]

2
2

0

1
2 2

T T Bi BiBi X
q l k

22
2 2 2

1

12 cos( )
( ) cos

n Fo
n

n n n n

Bi e X
Bi Bi

(32)

where Bi hl k  is Biot number, tann n Bi  is the
characteristic equation, and X x l .
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The numerical and analytical solutions are plotted in
Figure 6.
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Figure 6.  Numerical and analytical solutions of case II.

Case III
The physical situation of transient heat conduction with
specified temperature at one end and convection at
another end is shown in Figure 7.
Initial Condition:

( ,0) 0T x T  for 0 x l
Boundary Conditions:

(0, ) 0T t T  at 0x  when 0t
( ) 0k T n hT hT  at ,x l  when 0t

l

x 0q(0, )T t T ,h T

( ,0)T x T

Figure 7.  Physical situation of case III.
The analytical solution is given by [6]

2

2
0

1 2
1 2

T T Bi XX
q l k Bi

2

2 2 2
1

1 cos4 sin( )
( )sin 2

n Fon
n

n n n n

Bi e X
Bi Bi

(33)
where Bi hl k  is Biot number, cot 0n n Bi  is the
characteristic equation, and X x l .
The numerical and analytical solutions are plotted in
Figure 8.
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Figure 8.  Numerical and analytical solutions of case III.

Case IV
The physical situation of transient heat conduction with
one pulse source occurs at the beginning of time and
specified temperatures at both ends is shown in Figure 9.
Initial Condition:

0( ,0) 0T x T  for 0 x l
Instantaneous pulse occurs at 1x x  with strength 0Q .
Boundary Conditions:

0(0, ) ( , ) 0T t T l t T  when 0t

l

x0(0, )T t T

0( ,0)T x T

1x x
0( , )T l t T0Q

Figure 9.  Physical situation of case IV.
The analytical solution is given by [6]

2 20
1

10

2 sin( )sin( )n Fo

n

T T e n X n X
Q kAl

(34)

where 2Fo t l  is Fourier number, pk c  is the

thermal diffusivity, 1 1X x l , and X x l .
The numerical solutions just after the occurrence of the
instantaneous pulse source are plotted in Figure 10
without the analytical solutions because they lead to
oscillatory temperature distributions at small value of
times.  The numerical and analytical solutions after an
elapsing time are plotted in Figure 11.
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Figure 10.  Numerical solutions of case IV just after the
occurrence of the instantaneous pulse source.
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Figure 11.  Numerical and analytical solutions of case IV
after an elapsing time.
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Case V
The physical situation of transient heat conduction with
symmetrical pulse sources occurs at the beginning of time
and convection at both ends is shown in Figure 12.
Initial Condition:

( ,0) 0T x T  for l x l
Instantaneous pulses occur at 1x x  with strength 0Q .
Boundary Conditions:

( ) 0k T n hT hT  at x l  when 0t

x,h T

( ,0)T x T

l l

,h T0Q

1x x1x x

0Q

Figure 12.  Physical situation of case V.

The analytical solution is given by [6]

10

2
sin cos

n

n n n n

T T
Q kl

2

1cos( )cos( )n Fo
n ne X X (35)

where tann n Bi  is the characteristic equation,
Bi hl k  is Biot number, 1 1X x l , and X x l .
Like in case IV, the numerical solutions just after the
occurrence of the instantaneous pulse sources are plotted
in Figure 13 and the numerical and analytical solutions
after an elapsing time are plotted in Figure 14.
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Figure 13.  Numerical solutions of case V just after the
occurrence of the instantaneous pulse source.
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Figure 14.  Numerical and analytical solutions of case V
after an elapsing time.

Case VI
The physical situation of transient heat conduction with a
continuous pulse source occurs at the beginning of time
and specified temperatures at both ends is shown in
Figure 15.
Initial Condition:

0( ,0) 0T x T  for 0 x l
Continuous pulse occurs at 1 2x x x  with strength 0Q .
Boundary Conditions:

0(0, ) ( , ) 0T t T l t T  when 0t

l

x 0Q0(0, )T t T

0( ,0)T x T

1x
0( , )T l t T

2x

Figure 15.  The physical situation of case VI.
The analytical solution is given by [6]

0 1 2

10

cos( ) cos( )2
n

T T n X n X
Q k n

2 2

sin( )n Foe n X (36)
where 2Fo t l  is Fourier number, pk c  is the
thermal diffusivity, 1 1X x l , 2 2X x l , and X x l .
The numerical solutions just after the occurrence of the
continuous pulse source are plotted in Figure 16 and the
numerical and analytical solutions after an elapsing time
are plotted in Figure 17.
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Figure 16.  Numerical solutions of case VI just after the
occurrence of the instantaneous pulse source.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

( )T K

X

Analytical Solutions
Present Study

30t s
20t s
10t s

5t s
2t s
1t s

Figure 17.  Numerical and analytical solutions of case VI
after an elapsing time.
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Six preceding example problems can be classified
into two categories.  The first three cases are the transient
conduction heat transfer problems without instantaneous
pulse sources within the spatial domain.  The numerical
results obtained from the developed computer program
show good agreements with the analytical solutions both
in local and global considerations.  The remaining cases
fall into another category, the transient conduction heat
transfer problems with instantaneous pulse sources within
the spatial domain.  In solving problems of this type, the
interelement nodes must coincide with all pulse sources
and/or the edges of continuous pulse sources.  A special
treatment must be performed in the time coordinates just
before the existence of pulse sources.  Firstly, one or
several pseudo-time steps are inserted into the time
coordinates.  Then, the heat fluxes at the interelement
nodes for pulse sources and/or the rates of heat generation
over the elements for continuous pulse sources are
specified.  The numerical value of specified heat fluxes
and/or rates of heat generation can be found from the fact
that the amount of generated energy in the pseudo-time
interval must be equal to the strength of pulse sources
and/or continuous pulse sources.  After executing the
developed computer program over the pseudo-time
interval, the initial conditions are obtained and the
remaining procedures are same as the procedures in
solving the problems without instantaneous pulse
sources.  For the time coordinates just after the
occurrence of pulse source, the analytical solutions lead
to the oscillatory temperature distributions.  Thus, the
numerical and analytical solutions are compared only
when the time coordinates are large enough.  Although
the numerical results are very closed to the analytical
solutions after an elapsing time of the occurrence of the
instantaneous pulse sources, the smaller pseudo-time
interval for the special treatment is recommended in the
time marching process.

5. Conclusion
A finite element analysis for transient one-

dimensional conduction heat transfer problems has been
presented.  Space-time nine-node rectangular elements
were employed to distinguish the concept of directly
applied weighted-residual methods from other well-
established standard methods.  The corresponding finite
element computer program than can be executed on
standard personal computer was developed.

Six problems with various initial and boundary
conditions, which can be categorized into two classes,
were selected to verify the developed finite element
computer program.  For the problems without pulse
sources within the spatial domain, the temperature
distributions at each time step were directly obtained
from the execution of the developed computer program.
A special treatment was required when pulse sources
exist within the spatial domain.  The initial conditions can
be generated by specifying heat fluxes and/or rates of
heat generation that can generate the amount of energy
equal to the pulse strength within the pseudo-time
interval and executing the developed computer program

over the pseudo-time interval.  Then, the temperature
distributions for the time after the occurrence of pulse
sources can be obtained with the same procedures when
solve the problems without pulse sources.

All numerical results showed good agreements with
analytical solutions indicate that the accuracy of this
method is excellent.  Furthermore, the presented method
can efficiently solve the problems that pulse sources exist
in the spatial domain with the aid of a special treatment in
the time marching process.
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