คุณลักษณะการถ่ายเทมวลบนแผ่นเรียบที่ถูกพุ่งชนโดยลำอากาศ Local mass transfer characteristics on a flat plate impinged by an air jet

เอกชัย ปราบนคร¹, สุรชัย สนิทใจ²

ห้องปฏิบัติการเทอร์โมไดนามิกส์และการถ่ายเทความร้อน ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี 126 ถนนประชาอุทิศ แขวงบางมด เขตทุ่งครุ กรุงเทพฯ 10140 Tel: 02-470-9109, Fax: 02-470-9111, Email: surachai.san@kmutt.ac.th²

Ekkachai Prabnakorn¹, Surachai Sanitjai²

Thermodynamics and Heat Transfer Laboratory (THT)

Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi 126 Prachauthit Road, Bangmod, Thung Khru, Bangkok 10140 Thailand Tel: 02-470-9109, Fax: 02-470-9111, Email: surachai.san@kmutt.ac.th²

บทคัดย่อ

งานวิจัยนี้ศึกษาลักษณะของการถ่ายเทมวลสารบนแผ่นเรียบที่ ถูกพุ่งชนด้วยลำอากาศ ผิวทดสอบเป็นแผ่นเรียบขนาด 200 x 200 mm² ถูกหล่อเคลือบด้วยลูกเหม็น สัมประสิทธิ์การถ่ายเทมวลบนผิว ทดสอบทั้งหมด 1,681 จุด ได้ถูกวัดโดยใช้เกจวัดความลึกแบบ LVDT โดยเน้นศึกษาถึงอิทธิพลของค่า Reynolds number (5,000 < Re < 15,000) และระยะห่างระหว่างปลายหัวฉีดถึงผิวแผ่นทดสอบ (1 < H/d < 3) ต่อสัมประสิทธิ์การถ่ายเทมวล ผลการทดลองพบว่า สัมประสิทธิ์การถ่ายเทมวลจะมีค่าสูงสุดที่จุด stagnation และมีค่าคง ที่ในช่วง 0 < x/d < 0.5 ค่าสัมประสิทธิ์การถ่ายเทมวลจะลดลงอย่าง ต่อเนื่องเมื่อ x/d > 0.5 จนมีค่าต่ำสุดที่ประมาณ x/d = 1.2 และจะมี ค่าเพิ่มขึ้นอีกครั้งเมื่อ x/d > 1.2 เนื่องจากอิทธิพลของ ring vortex

Abstract

Local mass transfer characteristics on a flat plate impinged by a circular air jet are studied. A flat surface of 200 x 200 mm² is covered by naphthalene. Local mass transfer coefficients at 1681 locations are measured using LVDT depth gauge. The effects of the Reynolds number (5,000 < Re < 15,000) and the distance between the jet exit and the test plate (1 < H/d < 3) on local mass transfer coefficient are investigated. The experimental results show that the maximum mass transfer coefficient occurs at the stagnation point and is constant in the range of 0 < x/d < 0.5. For x/d > 0.5, the mass transfer coefficient continuously decreases and reaches a minimum value at x/d = 1.2. As x/d > 1.2, the mass transfer coefficient continuously increases due to the effect of ring vortex.

Keywords : Local mass transfer, Jet impingement

1. บทนำ

ในปัจจุบันอัตราการปลดปล่อยความร้อนในอุปกรณ์ อิเล็กทรอนิกส์ต่าง ๆมีปริมาณเพิ่มมากขึ้นตามกำลังไฟฟ้าใช้งานของ อุปกรณ์เหล่านั้น เช่นหน่วยประมวลผลกลางของคอมพิวเตอร์ ถ้า การระบายความร้อนในอุปกรณ์เหล่านี้ไม่ดีก็จะทำให้อุปกรณ์มี อุณหภูมิสูงและอาจจะเสียหายได้ดังนั้นจึงจำเป็นต้องเพิ่มสมรรถนะ การระบายความร้อน วิธีการใช้ของไหลพุ่งชน (Jet impingement) ้ได้ถูกนำมาใช้เพื่อเพิ่มความสามารถในการถ่ายเทความร้อน โดยพบ ้ว่าสามารถเพิ่มอัตราการถ่ายเทความร้อนได้มาก แต่อย่างไรก็ตาม การวัดอัตราการถ่ายเทความร้อนโดยการพาเพียงอย่างเดียวจากการ พุ่งชนของของไหลนั้นมีความยุ่งยากและมีความคลาดเคลื่อนสูง เนื่องจากมีการสูญเสียความร้อนโดยการนำความร้อนและการแผ่รังสี [1] เพื่อเป็นการลดความคลาดเคลื่อนดังกล่าวงานวิจัยนี้จึงได้มีการ นำเอาเทคนิคการวัดการถ่ายเทมวลสารจากลูกเหม็นมาใช้ในการแก้ ปัญหาเหล่านี้ เนื่องจากการถ่ายเทมวลสารจะเกิดได้เฉพาะการพา เท่านั้น ค่าที่ได้จากการวัดค่าสัมประสิทธิ์การถ่ายเทมวลสารสามารถ นำมาคำนวณหาค่าสัมประสิทธิ์การพาความร้อนได้ โดยใช้ความ คล้ายคลึงกันของการถ่ายเทความร้อนและการถ่ายเทมวล (heat and mass transfer analogy) [2]

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาคุณลักษณะการถ่ายเทมวล บนแผ่นเรียบที่ถูกพุ่งชนโดยลำอากาศจากหัวฉีดกลม โดยศึกษาถึง อิทธิพลของ ค่า Reynolds number และระยะระหว่างปลายหัวฉีดกับ ผิวทดสอบ (H/d)

2. อุปกรณ์การทดลอง และ วิธีการทดลอง

อุปกรณ์การทดลองสำหรับการศึกษานี้ประกอบชุดส่งอากาศผ่าน หัวฉีด และชุดวัดอัตราการถ่ายเทมวล

รูปที่ 1 แสดงชุดส่งอากาศ โดยอากาศจะถูกอัดผ่าน blower ให้ ไหลไปตามท่อ แล้วไหลผ่านชุดออริฟิตเพื่อวัดอัตราการไหล แล้วเข้า สู่กล่องปรับการไหล โดยกล่องนี้ช่วยทำให้การไหลของอากาศมี ความราบเรียบและสม่ำเสมอมากขึ้นก่อนที่จะไหลออกผ่านหัวฉีดที่มี ขนาดเส้นผ่านศูนย์กลาง 54 mm (d) อากาศที่ออกจากหัวฉีดจะไหล เข้าพุ่งชนแผ่นทดสอบดังแสดงในรูปที่ 2 ซึ่งผิวด้านหน้าของแผ่น ทดสอบขนาด 200 x 200 mm² หนา 3 mm จะหล่อด้วยลูกเหม็น อากาศที่ออกจากหัวฉีดด้วยความเร็วที่กำหนด จะเข้าพุ่งชนผิวของ ลูกเหม็นทำให้เกิดการพาเอามวลลูกเหม็นที่ระเหิดออกจากผิว ทดสอบไปกับอากาศ

รูปที่ 2 ผิวทดสอบที่หล่อด้วยลูกเหม็น

สำหรับชุดวัดอัตราการถ่ายเทมวลนั้นได้แสดงไว้ในรูปที่ 3 โดย ชุดวัดนี้ประกอบด้วย โต๊ะทดสอบที่มีชุดขับเคลื่อน 3 แกน, ชุดวัด ความลึกผิวแบบ LVDT, Signal conditioner และ Data logger ซึ่ง ชุดวัดนี้จะใช้วัดความลึกของพื้นผิวทดสอบที่ได้จากการหล่อและหลัง จากนำผิวทดสอบไปวางไว้ใต้ลำอากาศเพื่อให้อากาศพุ่งชนพาเอา มวลที่ระเหิดออกจากผิวทดสอบ

ลำดับวิธีการทดสอบความลึกของผิวลูกเหม็นแสดงในรูปที่ 4 การทดสอบจะเริ่มต้นจากการที่นำแผ่นทดสอบที่หล่อด้วยลูกเหม็น ไปทำการวัดระดับความลึกอ้างอิงของพื้นผิวลูกเหม็น โดยนำแผ่น ทดสอบไปวางบนโต๊ะทดสอบที่มีชุดขับเคลื่อน 3 แกน (X-Y-Z Table) ที่ใช้สกรูในการขับเคลื่อนเพื่อกำหนดตำแหน่งการวัดของหัว อ่านความลึกแบบ LVDT ชุดขับเคลื่อนนี้แต่ละแกนจะประกอบด้วย สกรูที่ขับเคลื่อนโดย stepping motor เพื่อควบคุมระยะการเคลื่อนที่ ด้วยคอมพิวเตอร์ ในการศึกษานี้ได้กำหนดจุดต่าง ๆบนผิวชิ้น ทดสอบเป็นจำนวน 1681 จุด โดยมีระยะห่างระหว่างจุดประมาณ 4.75 mm เมื่อหัวอ่านความลึกเคลื่อนที่ไปอยู่ในตำแหน่งที่ต้องการ และหยุดนิ่งแล้ว โปรแกรมคอมพิวเตอร์จะสั่งการให้อ่านค่าความลึก ของผิว โดยอ่านค่าสัญญาณจาก digital multimeter ซึ่งรับสัญญาณ มาจากชุด signal conditioner ของหัวอ่านความลึกแบบ LVDT ค่า สัญญาณที่อ่านได้จะนำมาใช้คำนวณหาความลึกของผิวโดยการสอบ เทียบค่าสัญญาณกับเกจวัดความลึกมาตรฐาน

รูปที่ 3 เครื่องมือวัดอัตราการถ่ายเทมวลของผิวทดสอบ แบบอัตโนมัติ 3 แกน (X-Y-Z Table)

หลังจากทำการวัดความลึกของผิวทดสอบที่ได้จากการหล่อ เรียบร้อยก็นำแผ่นทดสอบไปวางไว้ใต้ลำอากาศที่ออกจากหัวฉีดเพื่อ ทดสอบการถ่ายเทมวล โดยวางตำแหน่งให้จุดศูนย์กลางของลำ อากาศอยู่ตรงแกนกลางของแผ่นทดสอบ ดังแสดงในรูปที่ 1 แล้วทำ การทดลองที่แต่ละ H/d = 1, 2, 3 ที่ค่า Reynolds number = 5000, 10000, 15000 โดยใช้เวลาในการทดสอบประมาณ 4 ชั่วโมง จากนั้น นำแผ่นทดสอบมาทำการวัดความลึกของผิวทดสอบอีกครั้งหนึ่ง ผล ต่างของความลึกของผิวทดสอบที่ได้จากการวัดทั้งสองครั้งนี้จะบอก ถึงปริมาตรของลูกเหม็นที่ถูกพาออกไปโดยอากาศที่พุ่งชน

รูปที่ 4 แผนผังการทำงานของชุดวัดความลึกของผิวทดสอบ

3. การวิเคราะห์การถ่ายเทมวล

จากผลต่างของความลึกของผิวทดสอบที่ได้จากการวัดทั้งสอง . ครั้งนั้นสามารถนำมาคำนวณหาอัตราการพาของมวลสารต่อพื้นที่ (*m*) ได้ดังสมการที่ (1) ดังนี้

$$\dot{m} = \rho_s \frac{\delta z}{\delta t} \tag{1}$$

้ค่าสัมประสิทธิ์การถ่ายเทมวล (_{h_m}) สามารถคำนวณได้ดังนี้ [2]

 $h_m = \rho_s \frac{\delta z / \delta t}{\rho_{mm}}$

$$h_m = \frac{\dot{m}}{\rho_{\nu,w} - \rho_{\nu,\infty}} \tag{2}$$

(3)

หรือ

เห

$$\rho_{v,w} = \frac{P_{v,w}}{RT_w} \tag{4}$$

โดยค่าความดันไออิ่มตัว (_{P...}) ของลูกเหม็นสามารถคำนวณได้จาก สมการดังนี้

$$T\log P_{v,w} = \frac{1}{2}a_0 + \sum_{i=1}^{3}a_i E_i(x)$$
(5)

เมื่อ a₀ = 301.6247; a₁ = 791.4937; a₂ = -8.2536; a₃ = 0.4043; x = (T-287)/57; E₁(x) = x; E₂(x) = 2x²-1; $E_3(x) = 4x^3 - 3x$

ค่าสัมประสิทธิ์การถ่ายเทมวลที่คำนวณได้จะนำเสนอในรูปเทอม ไร้มิติ Sherwood number (*sh*) ซึ่งสามารถคำนวณค่าได้จากสม การดังนี้

$$Sh = \frac{h_m d}{D_{naph}} \tag{6}$$

สำหรับปริมาณของอากาศที่ออกจากหัวฉีดนั้นจะนำเสนอในรูป แบบของค่า Reynolds number (Re) ซึ่งสามารถคำนวณได้จากสม การดังนี้

4. ผลการทดลอง

ผลการศึกษาในครั้งนี้จะแบ่งออกได้เป็น 3 ส่วน คือ (1) ลักษณะความเร็วของอากาศจากหัวฉีด (2) ภาพการสังเกตลักษณะ การพุ่งชนของอากาศบนแผ่นเรียบ และ (3) การถ่ายเทมวลจากการ พุ่งชนของอากาศบนแผ่นเรียบ

4.1 ลักษณะของความเร็วของอากาศจากหัวฉีด

้ความเร็วของอากาศที่ออกจากหัวฉีดที่ Reynolds number เท่า กับ 10000 ได้ถูกวัดด้วย hot wire anemometer เพื่อศึกษาคุณ ลักษณะของการไหลของอากาศที่ออกจากหัวฉีด โดยวัดค่า average velocity และค่า turbulence intensity ที่ระยะห่างจากปลายหัวฉีด 5 mm ดังแสดงในรูปที่ 5 และ 6 ตามลำดับ

รูปที่ 5 average velocity ของอากาศที่ออกจากหัวฉีดในแนว แกน X

รูปที่ 6 ค่า turbulence intensity ของอากาศที่ออกจาก หัวฉีดในแนวแกน X

จากผลการทดลองในรูปที่ 5 จะเห็นได้ว่าความเร็วที่ออกจากหัว ฉีดมีลักษณะสมมาตรรอบแกน X=0 และมีความสม่ำเสมอของ ความเร็วตลอดหน้าตัดของหัวฉีด ความเร็วของอากาศจะลดลงอย่าง รวดเร็วที่บริเวณใกล้กับขอบด้านในของหัวฉีดทั้งด้านซ้ายและขวา

รูปที่ 8 ลักษณะการไหลของอากาศพุ่งชนแผ่นทดสอบ ที่ H/d = 2

รูปที่ 9 ลักษณะการไหลของอากาศพุ่งชนแผ่นทดสอบ ที่ H/d = 3

4.3 การถ่ายเทมวลจากการพุ่งชนของอากาศบนแผ่นเรียบ

ค่าสัมประสิทธิ์การถ่ายเทมวลจากการพุ่งชนของอากาศบนแผ่น เรียบแสดงในเทอมของ Sherwood number ที่จุดต่างๆบนผิวชิ้น ทดสอบขนาด 20x20 cm² จำนวน 1681 จุด ได้แสดงไว้ในรูปที่ 10 ซึ่งเป็นกราฟ 3 มิติ และรูปที่ 11 ซึ่งเป็นกราฟ contour

รูปที่ 10 การกระจายของค่า Sherwood number ที่ H/d = 1 , Re = 10000 ในรูปแบบ 3 มิติ

จากกราฟในรูปที่ 10 และ 11 จะเห็นได้ว่าการกระจายของค่า Sherwood number ที่ H/d = 1, Re = 10000 นั้น มีลักษณะที่สอด คล้องกับลักษณะการไหลของอากาศที่เข้าพุ่งชนแผ่นทดสอบ กล่าว คือ ค่า Sherwood number จะมีค่าสูงและค่อนข้างคงที่ที่บริเวณแกน กลาง (-0.5 < x/d < 0.5) ทั้งนี้เนื่องจากความเร็วของลำอากาศที่ไหล เข้าพุ่งชนมีค่าค่อนข้างคงที่ ค่า Sherwood number ลดลงอย่างต่อ

) ที่ Re = 10000 ดังแสดงในรูปที่ 6 นั้น จะ

เห็นได้ว่าการไหลของอากาศออกจากหัวฉีดเป็นการไหลแบบ turbulent flow ที่มีค่า turbulence intensity ที่แกนกลางของหัวฉีด ประมาณ 4% โดยที่ค่า turbulence intensity จะมีค่าเพิ่มขึ้นอย่างต่อ เนื่องเมื่อระยะห่างจากแกนกลางของหัวฉีดเพิ่มขึ้น จนมีค่าสูงสุดที่ x/d ประมาณ 0.5, -0.5 ทั้งนี้เป็นผลมาจากอิทธิพลของ shear layer

4.2 ภาพการสังเกตลักษณะการพุ่งชนของอากาศบนแผ่นเรียบ

การทดลองนี้ทำการศึกษาลักษณะการไหลของอากาศที่พุ่งชน แผ่นเรียบที่เกิดขึ้นในสภาวะต่างๆ โดยประยุกต์ใช้เทคนิค Smoke wire flow visualization [3] ซึ่งเป็นเทคนิคการถ่ายภาพการไหลของ อากาศที่มีการป้อนควันสีขาวให้ไหลไปตามกระแสการไหลของ อากาศเพื่อให้ถ่ายภาพการไหลได้ชัดเจน เทคนิคนี้เริ่มจากการใช้ เส้นลวดความต้านทานสูงขนาดเล็กเส้นผ่านศูนย์กลางประมาณ 0.15 mm มาทำการขึงเส้นลวดขวางเส้นทางการไหลของอากาศที่ ออกจากหัวฉีด แล้วทาน้ำมันบนเส้นลวด ซึ่งน้ำมันเหล่านี้จะรวมตัว กันเป็นหยดๆ เกาะบนขดลวดที่ระยะห่างสม่ำเสมอ หลังจากนั้นก็ จ่ายกระแสไฟฟ้าให้แก่เส้นลวดจนเส้นลวดร้อนแดงเพื่อทำให้เกิดการ เผาไหม้ของน้ำมันที่อยู่บนเส้นลวดจนเกิดควันสีขาวไหลไปตามการ ไหลของอากาศ ภาพที่เกิดจากการไหลของควันสีขาวจะถูกบันทึก ด้วยกล้องถ่ายรูปเพื่อนำมาวิเคราะห์ลักษณะการพุ่งชนของอากาศ บนแผ่นเรียบ

ลักษณะการไหลของอากาศที่พุ่งชนแผ่นทดสอบที่ระยะ H/d = 1, 2, 3, Re = 2000 นั้นได้แสดงไว้ในรูปที่ 7–9 ตามลำดับโดยจะ สังเกตเห็นได้ว่าที่ระยะ H/d = 1 และ 2 นั้น ควันมีทิศทางการไหลใน แนวแกนอย่างสม่ำเสมอ ดังนั้นอากาศที่ไหลเข้าพุ่งชนแผ่นเรียบจึงมี ความสม่ำเสมอสูง เมื่ออากาศเข้าพุ่งชนแผ่นเรียบแล้วจะไหลออก ทางด้านข้าง ทำให้เกิด ring vortex ขึ้นในบริเวณ wall jet region โดย ring vortex นี้จะไหลออกไปทางด้านข้าง อย่างไรก็ตามเมื่อ H/d = 3 จะสังเกตเห็นได้ว่าควันมีทิศทางการไหลในแนวแกนไม่ สม่ำเสมอ โดยมี ring vortex เกิดขึ้นในแนวแกน ซึ่ง ring vortex นี้ จะไหลไปในแนวแกนจะเข้าปะทะกับแผ่นเรียบแล้วสลายตัวไป ส่วน บริเวณ wall jet region นั้นจะยังคงมี ring vortex เกิดขึ้นแต่ไม่ชัด เจนและสลายตัวไปอย่างรวดเร็ว บริเวณ wall jet region นี้จะมีค่า turbulence intensity สูง

เนื่องเมื่อ x/d > 0.5 เนื่องจากความเร็วในแนวรัศมีมีค่าลดลง พร้อม ทั้งความหนาของชั้น concentration boundary layer มีค่าสูงขึ้นทำ ให้ความต้านทานการถ่ายเทมวลมีค่าสูงขึ้น ค่า Sherwood number ที่ลดลงอย่างต่อเนื่องจะมีค่าต่ำสุดที่ x/d = 1.2 ซึ่งเป็นบริเวณที่ อากาศหลังจากพุ่งชนแผ่นเรียบแล้วไหลออกไปทางด้านข้างเกิดการ ยกตัว (flow separation) ทำให้เกิด ring vortex ขึ้น โดยจะสังเกตได้ ว่าเมื่อ x/d > 1.2 ค่า Sherwood number จะมีค่าเพิ่มขึ้น ทั้งนี้เป็น เพราะอิทธิพลของ ring vortex ที่ส่งเสริมการพามวลสาร โดย ring vortex จะนำเอาอากาศที่มีไอของมวลสารที่ความเข้มขันต่ำเข้าปะทะ กับแผ่นทดสอบทำให้การพามวลสารมีอัตราสูงขึ้น

อิทธิพลของ H/d ต่อการถ่ายเทมวล

การศึกษานี้ได้ศึกษาถึงอิทธิพลของระยะห่างจากทางออกของ หัวฉีดถึงแผ่นทดสอบ (H) โดยทำการทดลองที่ H/d = 1, 2 และ 3 โดยรูปที่ 12 - 14 แสดงอิทธิพลของค่า H/d ต่อค่า Sherwood number ที่ Reynolds number เท่ากัน 5000, 10000, และ 15000 ตามลำดับ ผลการทดลองแสดงให้เห็นว่า Sherwood number ใน ช่วง 0 < x/d < 1.2 ที่ H/d = 1, 2 และ 3 มีค่าใกล้เคียงกันทั้งนี้เนื่อง จากความเร็วของแกนของลำอากาศ (potential core of jet) ที่ไหล เข้าพุ่งชนแผ่นทดสอบมีค่าใกล้เคียงกัน ซึ่งในอนาคตจะทำการวิจัยที่ H/d มีค่าสูงขึ้นกว่านี้ อย่างไรก็ตามที่ x/d > 1.2 จะสังเกตเห็นอิทธิ พลของ H/d ต่ออัตราการถ่ายเทมวลสาร โดยเฉพาะอย่างยิ่งที่ Reynolds number สูงๆ เช่น Re = 15000 โดยจะเห็นได้ว่าที่ H/d ต่ำ ค่า Sherwood number จะมีค่าสูงกว่าค่าที่ H/d สูงๆ ทั้งนี้ สามารถอธิบายได้ว่า ความเข้มของ ring vortex ที่เกิดขึ้นที่ H/d ต่ำๆ จะมีค่าสูงกว่า ทำให้สามารถนำเอาอากาศที่มีไอความเข้มขัน ต่ำของมวลสารเข้าปะทะกับแผ่นทดสอบได้สูงทำให้อัตราการถ่ายเท มวลสูงขึ้น

รูปที่ 12 Sherwood number ในแนวแกน X ที่ Re = 5000 ที่ H/d ต่างๆ

รูปที่ 13 Sherwood number ในแนวแกน X ที่ Re = 10000 ที่ H/d ต่างๆ

อิทธิพลของ Reynolds number ต่อการถ่ายเทมวล

งานวิจัยนี้ได้ศึกษาถึงอิทธิพลของความเร็วของอากาศที่ไหลเข้า พุ่งชนแผ่นทดสอบต่อการถ่ายเทมวล โดยความเร็วของอากาศนี้จะ นำเสนอในรูปตัวแปรไร้มิติ ของค่า Reynolds number (Re) โดยทำ การทดลองที่ Re = 5000, 10000 และ 15000 ผลการทดลองหา สัมประสิทธิ์การถ่ายเทมวลนั้นแสดงในเทอม Sherwood number ได้ แสดงไว้ในรูปที่ 15 - 17 ที่ H/d = 1, 2 และ 3 ตามลำดับ ผลการ ทดลองแสดงให้เห็นว่าค่า Sherwood number เพิ่มขึ้นเมื่อค่าของ Reynolds number เพิ่มขึ้น ทั้งนี้เนื่องมาจากผลของความเร็วที่เพิ่ม ขึ้น ส่งผลให้ความหนาของชั้น concentration boundary layer มี ความหนาลดลง ทำให้การถ่ายเทมวลของลูกเหม็นกับอากาศทำได้ ง่ายยิ่งขึ้น นอกจากนี้ค่าของ Reynolds number ที่เพิ่มขึ้นยังมีผลทำ ให้อิทธิพลของ ring vortex ในการส่งเสริมการพาของมวลเพิ่มมาก ขึ้นในบริเวณ x/d > 1.2 โดยเฉพาะอย่างยิ่งที่ H/d = 1

รูปที่ 15 Sherwood number ในแนวแกน X ที่ H/d = 1 ที่ Re ต่างๆ

รูปที่ 17 Sherwood number ในแนวแกน X ที่ H/d = 3 ที่ Re ต่างๆ

Normalized Sherwood number

จากผลการทดลองจะเห็นได้ว่าค่า Sherwood number นั้นจะ เป็นฟังก์ชันของ Reynolds number, คุณสมบัติของไอลูกเหม็นหรือ Schmidt number และ ตำแหน่งบนแผ่นทดสอบ ดังนั้นค่า Sherwood number ที่ตำแหน่งต่างๆ สามารถเขียนอยู่ในรูปของ

โดยทั่วไปแล้วที่ค่า m มีค่าเท่ากับ 0.5 และ n มีค่าเท่ากับ 1/3 สำหรับการไหลของของไหลที่มีค่า turbulence intensity ต่ำ ผลการ ทดลองนี้สามารถนำเสนอในรูปของ normalized Sherwood number

(_____) ดังแสดงในรูปที่ 18 ที่ H/d = 1 โดยจะเห็น ได้ว่า normalized Sherwood number เมื่อเปรียบเทียบกับรูปที่ 15 นั้นมีค่าใกล้เคียงกันมาก ในช่วง 0 < x/d < 1.2 สำหรับ Re = 5000, 10000, และ 15000 และที่จุด x/d = 0 ค่า Sherwood number มีค่า ประมาณ 1.17

รูปที่ 18 Normalized Sherwood number ที่ H/d=1

Average Sherwood number

ค่า average Sherwood number ที่ H/d ต่างๆ ตามแนวแกน X แสดงในรูปที่ 19 โดยจะเห็นได้ว่าค่า average Sherwood number มี ค่าเพิ่มขึ้นเมื่อ Reynolds number เพิ่มขึ้น และ H/d ลดลง

5. สรุปผลการทดลอง

งานวิจัยนี้ได้ศึกษาถึงลักษณะการไหลของอากาศที่เข้าพุ่งชน แผ่นเรียบและการถ่ายเทมวลสาร ถ่ายภาพการใหลของอากาศทำให้ สามารถเข้าใจถึงคุณลักษณะการใหลของอากาศทั้งก่อนพุ่งชนแผ่น เรียบและหลังพุ่งชนแผ่นเรียบ และทราบถึงกลไกการถ่ายเทมวลจาก การพุ่งชนของอากาศ ผลการทดลองวัดอัตราการถ่ายเทมวลสารบน แผ่นเรียบที่ถูกพุ่งชนด้วยลำอากาศที่1681 ตำแหน่ง ในช่วงของ 5000 < Re < 15000 และ 1 < H/d < 3 พบว่า เมื่อ Reynolds number เพิ่มขึ้นค่า สัมประสิทธิ์การถ่ายเทมวลสูงขึ้นในทุกตำแหน่ง สัมประสิทธิ์การถ่ายเทมวลมีค่าสูงสุดที่ x/d = 0 และจะลดลงเมื่อ x/d มีค่าเพิ่มขึ้น จนมีค่าต่ำสุดที่ x/d = 1.2 และเมื่อ x/d > 1.2 การถ่าย เทมวลจะเพิ่มขึ้นอันเนื่องมาจากการส่งเสริมการถ่ายเทมวลของ ring vortex ที่เกิดขึ้น โดยเฉพาะอย่างยิ่งที่ H/d ต่ำ ค่า Reynolds number ที่สูงขึ้นทำให้การส่งเสริมการพามวลโดย ring vortex เพิ่ม สูงขึ้น ส่วนอิทธิพลของ H/d นั้น จะพบว่า H/d จะไม่มีผลต่อการส่ง เสริมการถ่ายเทมวลในบริเวณ 0 < x/d < 1.2 ในช่วงของ Reynolds number ที่ทำการศึกษา แต่ที่ x/d > 1.2 จะพบว่า ค่า H/d ที่ต่ำลงจะ ทำให้การถ่ายเทมวลสารเพิ่มขึ้น ทั้งนี้อาจจะเนื่องมาจาก ความเข้ม ของ ring vortex มีค่าเพิ่มขึ้น

6. กิตติกรรมประกาศ

งานวิจัยนี้ได้รับงบประมาณสนับสนุนจาก เงินงบประมาณ ประ จำปี 2546-2547 ภายใต้ทุนวิจัยพระจอมเกล้าธนบุรี มหาวิทยาลัย เทคโนโลยีพระจอมเกล้าธนบุรี

7. รายการสัญลักษณ์

ค่าสัมประสิทธิ์การแพร่ของลูกเหม็นใน

เส้นผ่านศูนย์กลางหัวฉีด (m)

เอกสารอ้างอิง

 E. R. G. Eckert and Drake, R. M., "Analysis of Heat and Mass Transfer", McGraw-Hill, New York, 1972.

[2] R.J. Goldstein, and Cho, H. H., (1995), A Review of Mass
Transfer Measurements Using Naphthalene Sublimation,
Experimental Thermal and Fluid Science, Vol. 10, pp. 416-434.
[3] C. Cornaro, Fleischer, A.S. and Goldstein, R.J., (1999)

Flow visualization of a round jet impinging on cylindrical surfaces, Experimental Thermal and Fluid Science, Vol. 20 pp. 66-78.