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Abstract

This paper presents a new approach for applying 

robust stability analysis theorems to improve response 

characteristics of control systems by general gain 

scheduling. Using the proposed design procedure, 

allowable bounds for stability of scheduled gains may be 

obtained for all scheduling schemes being continuous 

differentiable and globally Lipschitz in relevant 

scheduling variables.  We apply the procedure to obtain a 

PID controller with significantly large scheduling bounds 

on the integral gain for joint control of a modified 

SCARA robot arm.  The procedure could yield not only 

input-to-state stability for typical uncertain nonlinear 

systems but also possibility to improve performance by 

means of gain scheduling.   
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I. Introduction 

 The problem of robust stability analysis (RSA), in 

which allowable bounds on nonlinear time-varying 

uncertainties (NTU) are computed for stable linear 

control systems, has been considered in parallel with the 

problem of robust controller design [1-4].  While it seems 

that no major result on the problem of robust quadratic 

stabilization has been reported after the publication of [5], 

robust stability analysis theorems have been steadily 

formulated to reduce conservatism of allowable 

uncertainty bounds.  These useful RSA theorems have 

been accumulated for many years, and they now cover 

various classes of uncertainties.  Motivated by this fact, 

[6] employed matrix algebra and geometry to propose a 

new class-gamma RSA theorem, and a technique for 

extending the uses of all RSA theorems in class gamma 

over robust controller design of single-input linear 

systems with NTU.  Using these, it was shown in 

numerical examples that the resulting allowable 

uncertainty bounds could be less conservative than those 

resulting from [5].  The number of inputs is allowed to be 

multiple in [7].  This paper extends applications of RSA 

theorems to address both the problems of stability and 

performance in the same setup.  The extension is 

achieved by strengthening class gamma theorems in [6, 7] 

to guarantee exponential stability rather than asymptotic 

stability, while casting scheduled variations of state 

feedback gains as psudo-uncertainty.  The proposed setup 

is not specific to a particular gain scheduling scheme.  It 

requires only that the scheme is continuously 

differentiable in its variables and is globally Lipschitz.   

2. Mathematical Description 

 In this paper, we are interested in computing linear 

control laws that guarantee input-to-state stability for the 

perturbed linear systems with nonlinear time-varying 

uncertainties: 

x [A A(x, t)]x [B B(x, t)][K K(x, t)]x

f (x,u)
 (1) 

where nx  is the state vector, the system matrix 
n nA  is known, the input matrix n mB  is 

known, m nK  is the nominal state feedback gain 

matrix to compute, the state-independent input pu  is 

unknown, the bounded nonlinear uncertain perturbation 
nf (x, u)  is unknown, and  denotes time-varying 

nonlinear uncertainties with appropriate dimensions and 

known bounds for matrices A and B.  Special attention 

should be drawn towards K(x, t)  which represents 

scheduling variations in the effective feedback gain 

matrix K K(x, t)  of the required gain scheduling 

system.  The origin is the equilibrium point of Eq.(1), 

whose right hand side is continuously differentiable and 

is globally Lipschitz in x and u, uniformly in t.  It can be 

shown using Lyapunov stability theorem that the system 

is input-to-state stable, that is bounded inputs produce 

bounded states, if the equilibrium point at the origin of 

the unperturbed system is globally exponentially stable 

[8].  Accordingly, it remains to show in this paper that the 

unperturbed system has the required property when 

subjected to time-varying nonlinear uncertainties.  This is 

given in the next section. 
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3. A Strengthened Class Gamma Theorem 

 Given a nominal gain matrix K and all associated 

uncertainty specifications, it is always possible to write 

the unperturbed system as proposed in [6, 7]: 
r

j jj 1

r
j jj 1

x Ax BKx [h (x, t) E ]x

Ax [h (x, t) E ]x
  (2) 

where A A BK  is known, n n
jE  is known, and 

j jl ujh (x, t) [h ,  h ]  is a time-varying nonlinear uncertain 

function with known bounds.  References [6, 7] proposed 

class-gamma theorems that guarantee asymptotic stability 

of the unperturbed system when written in the form of 

Eq.(2) and certain computational requirements are 

satisfied.  However, this type of stability is insufficient to 

guarantee input-to-state stability for the perturbed system.  

We show in this paper that the requirements in these 

class-gamma theorems are indeed sufficient to exert 

exponential stability in the large for the unperturbed 

system by incorporating additional arguments into the 

corresponding proofs.

Theorem 1 If the dynamical system in Eq.(2) is 

continuously differentiable and is globally Lipschitz with 

matrix A  being Hurwitz and 

max( (Z)) 0     (3) 

then the equilibrium point at the origin is globally 

exponentially stable.  The matrix T n nZ Z  is 

obtained by: 

1) Specified Q > 0 and A  to compute P from the 

Lyapunov equation. 

2) Compute r
l lj jj 1A A h E , and T

l lPA A P .

3) Compute T T
j j j j[PE E P] .

4) Compute 
T

j 1 nj j j jj
T T diag[ ] , where 

1 nj j j
T [ v v ] , and 1 nj j

{v , , v }  is 

the set of n orthonormal eigenvectors of j .

5) Compute 0

j
 by setting all negative elements of 

j
 to zero

6) Compute 0 0 T
j j j j

T T .

7) Compute r 0
uj ljj 1 jZ [(h h ) ] .

Proof We write for jh (x, t) , j = 1, 2, ..., r: 

j lj j lj lj jh (x, t) h h (x, t) h h l (x, t)  (4) 

where j j ljl (x, t) h (x, t) h .  Since j lj ujh (x, t) [h , h ] ,

jl (x) uj lj[0, h h ] j . Substituting lj jh l (x)  for 

jh (x, t)  in Eq.(2) yields: 

r
l j jj 1x A x l (x, t)E x    (5) 

Now put Q > 0 into the Lyapunov equation 
TQ (1/ 2)[PA A P] , solve for P, and obtain 

T
l lPA A P .  Note that the Lyapunov function 

TV(x)=(1/2)x Px  is such that TP P 0  and

2 2
(1/ 2) min( (P)) x V(x) (1/ 2) max( (P)) x

Accordingly, V(x)  is bounded from above and below by 

class K functions.  Differentiating V(x) along trajectories 

of Eq. (5) yields: 
rT T

j jj 1V(x, t) (1/ 2)x x (1/ 2) l (x, t)x x  (6) 

Since T
j j j , j  has a set of n real eigenvalues 

1 nj j
{ , , }  and the corresponding set of n 

orthonormal eigenvectors 1 nj j
{v , , v } .  Using 

the linear transformation 
j

x T z , we write: 

TT T T
j j j jj

x x z [T T ]z z z  (7) 

with 1 nj j j
T [ v v ] , r

l j jj 1x A x l (x, t)E x .

We set all negative elements of j  to zeros to produce 

0
j .  Thus, 0T

j
z [ ]z 0 , and

0T T T
j jjz [ ]z z z x x

It follows that: 
00 01 1T T T T

jj j j j
z [ ]z x [T ] [ ][T ]x x x 0  (8) 

where
0 01 1T

j j j j
[T ] [ ][T ] .

 Because 
j

T is orthogonal, we have 1 T

j j
T T , and 

0 0 T
j j j j

[T ][ ][T ] .  Now, because 
0 T

j[ ]
0

j

and because uj lj j(h h ) l (x) 0 , it follows that: 

0T T
j j uj lj jl (x, t)[x x] (h h )[x x] x  (9) 

Applying the above inequality to Eq.(6) yields: 

r 0T T
uj ljj 1 j

1 1
V(x, t) x x ((h h )[x x])

2 2
  (10) 

Now, by letting r 0
uj ljj 1 jZ [(h h ) ] , we have 

TV(x,t) (1/2)x Zx .  If max( (Z)) 0 , then

2
V(x,t) (1/2) max( (Z)) x        (11) 

which indicates that time derivative of the Lyapunov 

function is bounded from above by negative of a class K 

function.  Accordingly, the origin of the unperturbed 

linear system with time-varying nonlinear uncertainties 

(2) is a globally exponentially stable equilibrium [8].  

This completes the proof.    

 This class gamma theorem determines if a nominal 

linear state feedback gain matrix K yields exponential 

stability in the large for the equilibrium point at the origin 

of the interested system.  It does not provide such 

stabilizing gain matrix directly.  Accordingly, a technique 

for generating reasonable stabilizing candidates is 

required.  This is addressed in the next section.
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4. Controller Design Procedure 

 It has been shown in [6, 7] that if the nominal linear 

state feedback gain matrix is generated in a certain 

fashion, then relative orientation of null surfaces 

associated with the time derivative of the quadratic 

Lyapunov function along trajectory of a nominal linear 

system has a certain symmetry property.  In addition, this 

property offers stability robustness for the nominal linear 

system when subjected to time-varying nonlinear 

uncertainties.  This controller generation technique is 

incorporated as a part of the controller design procedure 

in [6, 7] for stabilizing a class of linear systems with 

time-varying nonlinear uncertainties therein.  Here, with 

extended objective to find stabilizing gain matrix with 

allowable gain scheduling bounds that guarantees a 

stronger type of stability, we find in realistic problems 

that this controller design procedure remains effective.  

The procedure is given here briefly for convenience of 

references.

Procedure

1)  Define a two dimensional domain of 0  and 

1, and select a grid size for this domain.  

2) Select coordinate ( ,  ) , then complete step 2 – 5. 

3)  solve for P from T T2I PA A P 2 PBB P .

4) Compute K from TK B P .

5) Compute Q from Q I ( 1)N .

6) For each pair of (K, Q) obtain in the previous steps, 

compute max( (Z))  in Theorem 1.  If Theorem 1 is 

satisfied, then K is a stabilizing solution.  The 

procedure may stop here, or may loop through steps 

2 – 6 to find other stabilizing solutions that may be 

more suitable to the system in some way. 

This procedure can be automated in numerical packages 

such as MATLAB, and yields stabilizing solutions for 

many realistic problems in seconds. 

5.  Example 

 Consider the problem in which a DC actuating motor 

for joint 2 of a modified SCARA robot depicted in Fig. 1 

is controlled to track a time-varying trajectory.  Because 

the electrical time constant of a DC joint motor is 

significantly less than the corresponding mechanical time 

constant, motor dynamics can be represented by a 

reduced-order mathematical model: 

bm m m
m m T d

m m

K K K
J (B ) r T V

R R

where mJ  is the mass moment of inertia of the rotor, mB

is the viscous damping coefficient, bmK  is the back-

EMF constant, mK  is the torque constant, mR  is the 

resistance of the armature,  Tr  is the joint mechanical 

transmission ratio, dT  is the loading torque resulting 

from coupled manipulator dynamics, V is the motor 

driving voltage, and  is the rotational angle of the 

motor in radian. For this joint, examining equation of 

motion of the manipulator reveals that the linear 

dynamics of the motor is perturbed by torque resulting 

robot operation: 

2
d 2 2 1 C2 2 Z2 1C2

2 2
2 Z2 2 2 1 C2 2C2 1

T m L m L L cos(q ) I q

m L I q m L L sin(q )q

where 1L  is the length of link 1, measured from 

rotational axe of link 1 to that of link 2, C2L  is the length 

from rotational axis of link 2 to the center of gravity of 

the same link, 2m  is the mass of link 2 assembly, 

including mass of joint motor 2, Z2I  is the mass moment 

of inertia of link 2 about the rotational axis,  iq  is the 

rotational angle of link i where i = 1, 2.  Relevant 

physical parameter for this SCARA robot is given in 

Table 1.  Some of these are obtained by direct 

measurement and some by computations.  The leasts of 

them are listed in Table 1, with the corresponding errors 

expected to be no larger than +5%. 

Fig. 1 The modified SCARA robot in the example 

Now, define the error signal: 
e r

where r is the referenced signal for .  It follows that 

e r , and e r .  We agree that r and its time 

derivatives are continuously differentiable, and that errors 

associated with measurements on Tr , r , r , q , and q

are negligible.  Substituting r e  and its time 

derivatives in the simplified equation yields: 

eff eff eff ueff 1 2J e B e G V F (q ,q , r, r)

where eff m mG K / R , 2 2
eff m 2 Z2 TC2J J m L I r ,

eff m bm m mB B (K K / R ) ,and ueff 1 2 effF (q ,q , r, r) J r

eff T dB r r T .

 Letting 1e dt x , 2e x , and 3e x , we write 

the perturbed uncertain system in the vector-matrix form:  

Joint 2 
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1 1

2 2

3 A1 3

B1 ueff eff

x 0 1 0 x

x 0 0 1 x

x 0 0 3.8 h x

0 0

0 V 0

89.3 h F (u) / J

where A1 l,A1 u,A1h [0,  0.86] [h ,  h ] , B1h [0,  20.52]

l,B1 u,B1[h ,  h ] , and T
1 2u [q q r r] .  Now, let us 

employ the PID gain scheduling control law: 

V K(x)x

where i i p dK(x) K K (x) K K , iK , pK  and 

dK  are constants, and iK (x)  is scheduled change of 

the integral gain iK  according to the error signal and its 

first time derivative.  The scheduling scheme is imposed 

to be continuously differentiable and is globally Lipschitz 

in the scheduled variables.  It then follows that the right 

hand side of the equation of motion is continuously 

differentiable, and is globally Lipschitz in x and u. 

Sym. Description Value Unit

mJ Mass moment of 

inertia of rotor 

51.62 10 kg.m2

mB Viscous damping 

coefficient

51.15 10 N.m.s

bmK Back-EMF constant 1/26 V.s

mK Torque constant 1/26 N.m/A

mR Resistance of the 

armature

7.3 Ohm

Tr Joint mechanical 

transmission ratio

1/78 -

1L Length of link 1, 

measured from 

rotational axe of link 

1 to that of link 2 

0.5 m

C2L Length from 

rotational axis of link 

2 to the center of 

gravity of the same 

link

0.2 m 

2m Mass of link 2 

assembly, including 

mass of joint motor 2

4.65 kg

Z2I Mass moment of 

inertia of link 2 about 

the rotational axis

0.0218 kg.m2

Table 1 Physical parameters for the modified SCARA 

robot in example 

 The equation of motion represents a linear system 

with nonlinear uncertainties in parameters and state-

dependent perturbation ueff 1 2 effF (q ,q , r, r) / J . Because of 

these undesirables, we do not expect asymptotic stability 

for the autonomous system.  Rather, we pursue a more 

realistic input-to-state stability in which bounded inputs 

produce bounded errors.   To obtain this, it remains to 

show exponential stability of the unperturbed system 

about the equilibrium point at the origin.  The dynamics 

of the unperturbed scheduled uncertain system is now 

given by: 

1 1

2 2

3 A2 A1 3

n

B1

x 0 1 0 x

x 0 0 1 x

x h (x) 0 3.8 h x

0

0 K

89.3 h

where, A2 B1 ih (x) 89.3 h K (x)  and 

n i p dK K K K  is the nominal gain matrix.  Note 

that we have accounted iK (x) , the scheduled variation 

of the integral gain, as an additional uncertain element 

A2h (x)  of the system matrix.  Using the controller 

generating procedure in [6-7], we obtain a stabilizing 

solution:

nK [ 2.53 4.4 2.48]

 Using Theorem 1, it can be shown that the above 

solution guarantees exponential stability for the 

unperturbed scheduling uncertain system and all the 

integral gain scheduling schemes, provided that the 

integral gain variation iK (x)  is scheduled to be within 

(0.56 100 / 2.53)% 22.1%  of its nominal value of 

2.53 .  The perturbed system is then input-to-state stable 

under this condition.  For computation references, we 

give relevant matrices resulting from the application of 

Theorem 1: 

3.48 2.03 0.018

P 2.03 3.52 0.03

0.018 0.03 0.017

,

4 5.22 2.95

Q 5.22 10.09 5.13

2.95 5.13 3.89

,

and

5.07 9.59 5.42

Z = 9.59 18.7 9.43

5.42 9.43 7.31

.

 The eigenvalues of Z are -0.0195, -1.99, and -29.08.  

To see system responses in a typical situation, we let the 

integral gain be scheduled within the allowable bounds 

by a fuzzy logic scheduler.  All the membership functions 

are Gaussian and Sigmoid, which are continuously 

differentiable and is globally Lipschitz.  Details on the 

scheduler are not the main objective of this paper and 

thus will not be discussed.  We let r = (t + 0.1sin(t))/rT,

1q =0.2sin(t)cos(t) , and all the relevant physical 

parameters are at their minimums.  The resulting response 

is given in Fig. 2. 
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Fig. 2 Response of the integral gain scheduling PID 

system 

6. Conclusion 

 In this paper, previous applications of class-gamma 

theorems on controller design for robust stability of 

perturbed linear systems with time-varying nonlinear 

uncertainties have been extended to provide robust 

performance by means of gain scheduling.  This 

extension is centered around a strengthened class-gamma 

theorem that guarantees in the large exponential stability, 

rather than asymptotic stability, for the unperturbed 

system.  By treating the required gain scheduling 

variations as psudo-uncertainties in a special fashion, the 

class-gamma theorem could guarantee input-to-state 

stability for the uncertain system when subjected to state-

dependent perturbations.  It yields solutions for both 

stabilizing gain matrix and gain scheduling bounds at the 

same time.  Except the required conditions of being 

continuously differentiable and globally Lipschitz, our 

controller design procedure does not assume a specific 

scheduling scheme to come up with solutions.  

According, a gain scheduling scheme can be selected 

thereafter to be most effective for different problems. 
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