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Abstract

The purpose of this paper is to predict wave pattern
generated by ship when a ship cruises with a constant speed in
the Fourier domain. Boundary Element Method with Green
function satisfying Neumann-Kelvin boundary condition at the
mean position of free surface is used to compute free surface
elevation. Fourier integral on the hull is replaced by Stokes’
theorem, which transfers into contour integral around the surface.
Numerical calculation is performed with Adaptive Simpson
scheme in order to reduce the CPU time. The computational
results are good agreement with the existing numerical resuit and

e)(perimental data.

1.Nomenclature

E(x, y; 1) Wave elevation

E\(0) Complex exponential integral
F Froude number

G(M ,M") Green function

K Pole

[ Characteristic length
M(x, v, 2) Field point

M, Y, ) Unit singularity point

n Unit vector

R Real part of complex number
S, Body surface

S Free surface

S; Enclosing contour surface
S, Wake surface

Steam velocity

Total velocity potential
Perturbation potential
Source

Doublet

T a e B8 <

2.Introduction

Solving the hydrodynamics problem with free surface effect
by numerical method has been studied for more than thirty years.
Chapman [1] use finite element method to solve piercing plate
problem. Salvesen [2] uses strip theory with Green function
presented by Wehausen and Laitone [3) to solve ship hull
problem. The last method is developed for solving many problem
such as Ba, Guilband, and Coisier [4] used to solve steady flow
problem, Inglis and Price [5), Nontakeaw [6] used to solved
unsteady flow problem. B.Ponizy {7] used Kelvin singularity with
the Green function presented by Noblesse [8]. This Green
function composes of 2 parts, Rankine term and wave generated
term. He uses tabulation technique for Green function and uses
Gauss method for surface integration solving anti-symmetric flow
problem.

In this papers, The present study uses Kelvin singularity with
the Green function in the analytic form presented by Guevel and
Bougis [9] and developed by Nontakeaw [6] using Adaptive
Simpson method for the function. The surface integration can be
transfer into a contour one by using the Stokes’ theorem to solve

symmetric steady flow problem and compute wave pattern.

3. Numerical Method

Consider a ship moving with steady forward speed [/ in
the presence of a free surface. We assume that the fluid is
incompressible and inviscid that the flow is irrotational so that a
velocity potential exists in the fluid domain. An Oxyz cartesian
coordinate is chosen such that z=0 plane corresponds to the
calm water level and z is positive upwards. This coordinate
system for the forward speed problem is translating in the
positive x direction relative to a space fixed frame and x-7 plane
is coincident with the center-plane of the body. The total velocity

potential can be expressed as



S=-Ux+0¢ (1

Where ¢ is the perturbation potential. The boundary value
problem is governed by the Laplace equation and both @ and o
satisfy the Laplace equation, The fluid domain is bounded on top
by the free surface Sf, internally by the hull of surface S, the

wake surface Sw , and enclosing contour surface Si (see Fig.1)

Figure 1 : Coordinate system

On the hull surface, we require that flow be tangential to the hull

surface (Neumann Condition)
9 _7i  onbogy @
on
Where n is a unit outer normal vector. On the free surface E(x,
y), the perturbation potential must satisfy the kinematic free
surface boundary condition
d9

"= (U + q),r)E.r + ¢4\'E_\‘

pr on z=E(x, y; 1) 3)

and the dynamics free surface boundary condition
gE + Up, + 3(grade)’ =0 on z=E(x,yin) ()
Since the elevation of wave is assumed small, the kinematic
and dynamic boundary conditions on the free surface may be
linearlized, respectively
0.= UE, (5)

__ 1,90 6
E—~gU {6)

and combined to be satisfied Neumann-Kelvin free surface

condition
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80+ U, =0 on z=0 (7)

The Green's Theorem is used to define perturbation

potential

1 on(M") , ~OGM MY . (8)
o(M) —Hﬂ ( i, G(M,M") - (M )—aTw—)d.s(M )

Where M =(x, y, z) is field point, M’ =(x’, ¥, ') is
source point, § =5, + Sf + S, + S, is the boundary surface
surrounding the fluid domain. O is the constant source strength
(C= a"/a,, ) . W is the constant doublet strength distributed on
the body, and G is the Green function. Mathematically it is the
solution of Poisson equation (V°G = §(x—x")8(y-y")8(z=7")).
physically it is the response of a system when a unit point source
is applied to the system. For this problem, The Green function,

Nontakeaw [6], satisfy Neumann-Kelvin free surface condition (7)

GMM)=g,+¢g, (9)
& Vix-x)+(y 1— V) +(z-2)°
_ 1 (10)
VE -+ -y + @+ )

g1=-2%R( f F KIG(KE) + G(KENO) (11)
£= %[z + 7 +i((x =x)cos +(y — Y)sit0)] (12)
g = %[z + 2 +i((x -x)cos8 — (y — y)sind)] (13)
K= Wts% (14)
Gl = | FPOE) if 30020 (15)

exp(OLE\(X) — 2] if 3(;0)<0

= exp(=t) , - 1% ial i
E\() =f PI( )dt ; 17 order complex exponential integral
X

Where | is characteristic length, R is real part of function. The
term g, , often studied in aerodynamics or hydrodynamics using
Rankine’s singularities. We use Neumann condition to be solved
for the unknown function (doublet, (). Replace equation (8) into

equation (2)



f f o(M)2C (M, M')ds
P Ny
’ aZG ’ _ 7o
-} wM )8—(M’M )ds = 4nU.R
s 14,0 oy
(16)
For a polygonal panel, the surface integral can be transfer
into a contour one by using the Stokes’ theorem (see for example

Y. Tiaple[10] )
4. Numerical resuits

Submerged ellipsoid body :

For the investigated numerical method, we initially examined
a fully submerged body since this would avoid any difficulties
associated with the intersection of the hull with the free surface.
We chose submerged ellipsoid compared, to results presented by
B. Ponizy [7]. The dimension of ellipsoid is g /b = 5, [l= 2¢ and
c= m. Where a is semi-major axis, b is semi-minor axis,
[ is the length. The hull centerline was located at a depth of z =
0.5¢. The panels on the body are discretized by using a cosine
spacing in all directions. In this case, the surface integral has
only the hull of surface S, because of immerged symmetric flow.
Computed wave pattern for ellisoid is compared with numerical in
B. Ponizy [7]. Fig.(2) shows wave profile along the body
calculated from Eq. (6) at Froude = 0.6 . Fig.(3) shows wave

contour on the free surface. Fig. (4) shows ellipsoid generated

waves.
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Figure 2 : Wave pattern for Froude = 0.6
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Figure3 : Wave contour on the free surface
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Figure 4 : Ellipsoid generated waves, Froude = 0.6

Wigley hull :
The wigley hull is a mathematical hull form its offset are

defined by
y=3B01-CH 1 - &) a7

Where B is beam = 2, H is draft = 5, and L is length = 80 . The
panels on the body are discretized by using a cosine spacing in
all directions (see Fig.5) and the mesh on the free surface are
discretized by a hyperbolic tangent spacing in the surface hull

(see Fig.6).
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Figure 8 : Wigley generated waves, Froude = 0.266

5. Conclusion

In this paper, the authors have described a boundary
element method (or panel method) with Green function satisfying
Neumann-Kelvin boundary. This method uses Neumann condition
(actual condition) to solve strength of constant doublets on the

body. Consequently, the free surface elevation is computed from

Figure 6 : mesh on free surface

linear dynamic free surface condition. The computational results

obtained are in a good agreement B. Ponizy data [7] in Fig.(2)

in this case, the surface integral has 2 parts, the free . i .
and Fig.(7) . The surface integral computed by contour one using

surface S; and the surface hull S, . The free surface can be .
Stokes’ theorem. Actually, this method uses a number of panel

transfer into contour one around the hull across free surface by . .
on surface less than Gauss method and spend a little numerical

using Stokes' theorem ( see Y. Tiaple[10] ). Computed wave i
ime.

pattern of the wigley hull is compared with numerical in B. Ponizy

[7). Fig.(7) shows wave profile along the hull at Froude = 0.266
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Figure 7 : Wave pattern along the Wigley hull at Froude = 0.266
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