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Abstract
This paper deals with dynamic optimization of
vibrating  spring-mass-damper systems which are

characterized by n second-order linear coupled
differential equations with constant coefficients, where
n is the number of degrees-of-freedom of the system.
The system is commanded to move between two fixed
states in a prescribed final time. In the literature, the
optimal solution of this problem is obtained by
simuitaneously solving 4n first-order linear differential
equations in the state and costate variables. The
boundary conditions are stated in terms of 2n state
variables at the initial and final time. As a result,
shooting methods are used with guesses on the
costate variables until a desired convergence is
achieved. The solution procedure is highly computer
intensive and the convergence is sensitive to initial
guess.

In this paper, a different form of the variational
statement is presented. As a consequence, .instead of
4n first-order differential equations, the system is
described by n fourth-order differential equations in the
state variables. Since the costate variables do not
appear explicitly in the optimality equations, the
problem becomes highly attractive to solve using

classical weighted residual methods, such as Galerkin

scheme. Some salient features of this scheme are: (i)
convergence is achieved with a very small number of
modes, (i) the solution of state and control trajectories
is not iterative and requires inversion of only one
(mn X mn) matrix, where n is the number of degrees-
of-freedom in the system and m is the number of
modes chosen in the analysis.

The authors believe that the soiution of fourth-order
TPBVP  with weighted residual methods has
tremendous computational benefits over shooting point

methods for real-time control applications.

1. introduction
The dynamic model of an n degree-of-freedom
mechanical system consisting of spring, masses, and
dampers can be written in the following general form:
MX +CX + KX =U ™)
where M, C, and K are (n><n) symmetric matrices
usually referred to as the mass, damping, and stiffness
matrices, respectively [6]. Also, M is a positive definite
matrix. X is an n-dimensional vector of generalized
coordinates. U is an n-dimensional vector of actuator
inputs and ‘dots’ denote the derivatives of variables with
respect to time.
The problem statement is to choose the control-

input vector U(t) that will take the system from an



initial position X, and initial velocity )?O attime f{, toa
final position X, and final velocity )‘({ at the end of
time t,. The path during ¢, and f, must minimize the
following quadratic functional dependent on position and

rate variables, and contro! inputs.
“1 T T . T
J= j—[x QX+X QX+U RUP (2
t 2

where Q,, Qz’ and R are (n X n) symmetric matrices
and Ris a positive definite matrix.

The conventional way of handling this problem in
the literature ([2], [5]) is to transform the n second-order
differential equations (1) to 2n first-order differential

equations by defining an n-dimensional vector X,

where X = X . Eq. (1) can then be written as:

X 0 / X 0

= |= -1 -1 |t - U @)
X -M K —M CllX M

The above matrix differential equation can be rewritten

in the following compact form:

X =aX+8U A)
where A is (2n><2n) matrix, X isa (2n><1) vector,
and B is a (20X n) matrix with entries of Eq. (3).
With this redefinition of the variables, the cost function

can be rewritten as
ol 1 T T
J= —(X QX +u RU) ot (5)
t,L.2
where Q is a (2n><2n) matrix with two diagonal
subblocks consisting of Q, and Q,.

Using the fundamentals of variational optimization
(2], [4], [7]). the necessary conditions for extremum are
obtained by defining a new functional J'

“l1 T | r
J= | —(X QX +u RU)
2
+ A (X—AX—BU) t (6)
where A is a (anl) vector of Lagrange multipliers

associated with the 2n differential Egs. (4). The vector

7 _
A’ has the form (Z.T,lr), where ﬂ is associated

with the first n differential equations of (4) and A with

the last n.
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It is easy to prove that the extremal path satisfies

Eq. (4) along with the following conditions:

A=-aX-A"A 7)

RU+B'A=0 ®)

On solving for U= ~R7'B'A  from (8) and
substituting in (4), the necessary conditions become

X=aX-8r"8"A (9)

A=-aX-a"A (10)

with boundary conditions specified on X at t,and t, .

These 4n first-order differential equations are
traditionaily solved either by matrix exponential methods
or shooting methods {2]. Since neither the initiai nor the
final conditions on the costate variables are specified in
the problem, in both of these methods, the objectives is
to first compute these values consistent with the

boundary conditions on the state variables.

2. 4"-Order TPBVP Formulation

it will be shown in this section that an alternative
form of the optimality equations can be written in which
the state variables appear in their fourth derivative and
the costate variables are eliminated. This can be
achieved by adopting either of the two procedures: (i)
eliminate the costate variables from Egs. (9) and (10),
the variational form without

(i) rework Lagrange

multipliers by substituting U from Eq. (1) in (2). It will
be shown in this section that both procedures lead to
the same result. However, the procedure with Lagrange
muitipliers must be avoided since it may be hard, or
even impossible, to eliminate these multipliers, specially,

in nonlinear problems.

2.1 Elimination of Lagrange Multipliers
On eliminating Lagrange multiplier by finding A and
A from (9) and substituting into (10), it can be shown in

a few steps that Eq. (9) and (10) can be rewritten as

S, X+8,X+8,X+sX+sx=0 (1)

where S,,i=0]1,..4 are (nxn) matrices defined as



S, = MRM

S, = MRC ~ CRM

S, = MRK + KRM — CRC = Q,
. = KRC — CRK

S, = KRK +Q, (12)

2.2 Alternative Variational Form
On substituting U from Eq.(1) into Eq. (2), the cost

function takes the following variational form with

prescribed end conditions on x, and il. at t, and £ :

tA r
J= j—[x’Q,,x+ x"Q, X+

f

(MX + cx + kx)" R(MX + X + Kx)] dt (13)

which can be further simplified to

YA, A L
J= I~[XTMRMX+ 2X" MRCX + 2X T MRKX
h 2 .
+2%crix + X7 (cre + @, Jx
+ X7 (KRK +Q, )x] dt (14)

Mathematically, the form of J is

J=IF(X,I,...,xn,)Z1,...,)2n,5<'1,...,5('n)dt (15)
to
and the variation of such a functional is
Yo OF d OF d° OF
d;:jz —_——— - ———— | h o
. 2 .e i
tg =1 6x,. at axi at axl,
ty t
[ OF d OF n
2| —————|hdtf +X—h dt| (16)
=\ 0%, dt 0%, =1 0%, f
tO o

where h,(t) are the variations x,(t). Since h, and A,
must vanish at the two end point, the necessary

conditions for optimization become

d* OF
+ 5 =

Ox, dtOx, dt” OX

On applying the necessary condition (17) on (14), it can

an

be shown that this yield the same optimality condition
listed in (11) and (12).

3. Weighted Residual Methods
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Different forms of weighted residual methods have
been used to solve boundary value problems. A
summary of these metheds is available [1]. These
methods can be classified as: (a) those that satisfy the
differential equations approximately over the domain but
satisfy the boundary conditions exactly such as
Galerkin's method, method of moments, collocation
method, and method of sub-regions, (b) weal
formulations which satisfy the differential equations only
partially, and (c) boundary element methods which
satisfy the differential equations exactly over the domain
but boundary conditions only approximately such as
Trefftz method.

Due to the nature of our optimization problem with
fixed end point constraints at t, and {, only the
methods classified in category (a) were considered
suitable.  The underlying fundamental behind this
method can be summarized using the following simple
example. Consider the problem

Nx)—p=0

where 77( ) is a differential operator, x is a function of

(18)

time, and p is a constant. The solution x(t) must also
satisfy stated boundary conditions at the initial and final

time. In this method, x(t) is approximated as

x(t) = Za 9,(t) (19)

where (Y (t) are undetermined parameters and ¢,(t)
are linearly independent mode functions selected from a
complete set of functions. These functions are usually
chosen to satisfy admissibility conditions relating to the
boundary conditions. On substituting (19) in (18), the
following error function results
E=T(x)~p

This error function &£(t) is forced to be zero, in the

(20)

average sense, by setting weighted integrals of the

residual equal to zero, i.e.,

t
fey at=o0 (21)
t

0

where I/ (t) are the weighting functions.



The category (a) methods differ primarily in their
selection of weighting functions. For example, the

method of moments uses weighting function as

t.i=1...,n. Galerkin's method uses weighting

functions the same as mode functions. In this paper,

Galerkin's method was selected to obtain the
approximate sclution of the problem because of its
generality and ubiquitous use in solving problems of
mechanics. The mode functions in this problem are
chosen as poiynomials due to their simplicity of

analytical integration.

4. Galerkin's Solution

The approximate solution of the fourth-order
differential Eq. (11) must be obtained subjected to the
X(ty)=X,,

conditions 0
and )?(t, )= X

following

X(t,)=X,,

boundary

Xt =X In order

f? fe

to ensure admissibility of the trial functions, the

approximate solution must have the following form (3]
xty=D )+ L@, (22)
=1

where CDO(t) s an n-dimensional vector of mode
functions that satisfies the boundary conditions of the

vector X at time t and t ¢‘.(t) are mode

i
functions, which vanish at the two end points and aiso
have zero derivatives at the end points. As a result,
X(t) always satisfies the boundary conditions of the
problem. L., L are n-dimensional constant vectors
that are determined by minimizing the residual error.

On substituting (22) in Eq. (11), the following error

vector results:
sty=s,Do+5,D, +5,0, +5,D, +5,P,

+L1(s‘, Oi+5,D, +5,D, +5,P, +sO(D,IJ

+

Lz(sa D +5,D, +5,5, +5,0, +sOCI>2)
...

+Lm(sa O, +5,D, +5,0 +50, +soc1>m)(23)
N
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In accordance with Galerkin's procedure, the error
function must be chosen to be orthogonal to the mode

functions

t ’
femyg,yat =0 i=1..m (24)
fa

This leads to mn scalar equations which can be used.to

solve for the mn elements of the vector L1 ..... L . The

m
equation (25) can be written in a matrix form:
~ a7 = - -
1 12 Tim L, ~R,
a Tz Tom || L2 —R,
=\ . | ()
L mi Tm2 T Tmm_J _me __ Rm_J

where 7 is a (nXn) matrix subblock, and R, is a

(n X 1) vector defined below:

tr' ass . .
T, = j(sd ®,+5,P, +5,P, +5,0, +s°<13,>¢p dt

ty

t " .
R, = [[s‘1 Do+5,D, +5,P, +5D, +so®0)¢p dt
t
(26)
The above equation can be inverted to solve for the

vectors L ,....L
1 m

4.1 Mode Functions: A Particular Choice

it is quite evident that any set of (DO (t) and ¢, (t)
that satisfies the boundary conditions is a valid set of
mode functions. In this paper, (DO (t) is chosen as the

following cubic function of time

A . 3 2. 1. |,
O, =x, +X,t+ t—,‘,(x,~x)o—7x0——xr ¢
t
!

f 14

2 1 /. .
+ F(X,—XO)+F(Xr—X0)f3 (27)
r f



Figure 1. A two degrees-of-freedom spring-mass-

damper system.

It can be easily verified that @ (t,)=x,, @ (t,)=

X, (bo(to)=)'(o, and (i)o(tf)=X,. The mode

functions ¢i (t) are selected as
gor=t(t—=¢, )" i=1..m (28)
These mode functions possess the properties ¢;(to)=
¢i(tf)=¢i(t0)=¢/(tf>=o'
With these mode functions, the matrix Tp, and the
right hand side vector R can be analytically computed.

respectively.

5. Example

A two degree-o-freedom  spring-mass-damper
system is used as an example. The system is sketched

in Figure 1. The matrices M, C, and K for this system

are:
m, 0
M=
0 m,
c, + c, -c,
C=
—-c, ¢, + c,
k, +k2 —k,
K= (29}
— K, k, + K,

The states are commanded to move from X =
(10,20)T, )'(0 =(10,20)T to the equilibrium position
with zero final velocity, ie. X, =X, =0. The
parameters of (29) in MKS units are: m, =m, =1.0,

c =c3=1.0, c

, =20, k, =k, =k, =3.0. The

2

matrices in the cost function are:

R=1,Q =Q,=0.
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Figure 2: The optimal response curves: Comparison of
matrix exponential solution and Galerkin solution for

t, = 3 seconds.
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Figure 3: The optimal response curves: Comparison of
matrix exponential solution and Galerkin solution for

t, = 5 seconds.

Figure 2 compares the optimal response curves of
the state variablesx, and x, obtained using matrix
exponential method and Galerkin's method for t =3
seconds. From these response curves, it is quite
evident that with only three modes, Galerkin's solution
becomes very close and overlap with matrix exponential
solution.

Figure 3 again compares the response curves for
identical parameters but t, = 5 seconds. The number
of medes required for a reasonably accurate solution is

higher in this case (5 modes) due to more zero

crossings over t =15 seconds of the response, It is



clear that Galerkin's solution becomes very close and

overlap with matrix exponential solution.

6. Conclusion

An alternative fourth-order two-point boundary value
formulation has been presented for the solution of
dynamic optimization of linear springs, mass, damper
systems. The fourth-order formulation requires solution
of n fourth-order equations in state variables for an n
degrees-of-freedom system while the conventional
approaches in the literature solve the same problem
using 4n first-order differential equations in the state
and the costate variables. The solution approach using
the conventional way becomes difficult and computation
intensive because the initial or final conditions on the
costate variable are not known and must be computed
iteratively. Due to the absence of costate variables in
the fourth-order formulation, Galerkin's method becomes
highly attractive to solve the problem. This paper
outlines the Galerkin's solution approach and shows
how quickly the solutions can be obtained by only using
a few modes. The author beiieve that the fourth-order
formulation combined with Galerkin's approach will offer
computational benefits for optimization of nonlinear
dynamic systems to obtain the exact solution as well as
to quickly arrive at the approximate solution which can
be used as initial guess to algorithms based on shooting
methods.  The fourth-order TPBVP formulation is

extremely attractive for real-time control and motion

planning due to its simple computational prccedure.
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