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Abstract

In computational fluid dynamics, the post-processing
process is considered to be an important step since it help
us to analyze and visualize the details of the flow that we
have studied. For the separated flow, coherent structures
which exist in the flow, play a significant role. It has
become increasingly evident that coherent structure
influence mixing, noise, vibration, heat transfer, drag etc.
In this paper, we overview the state of the art of detecting
and identifying the flow structure such as a one-
dimensional waveler tramsform and Fourier spectral
analysis, a lambda II (A;) and typical |w| approaches.
These techniques are applied to the unsteady flow over a
bluff rectangular plate. -

The wavelet analysis offers an alternative approach
to the problem of detecting and identifying the flow
structure. It provides not orily the spectral information, as

in Fourier spectral analysis, but also localization of events -

in time. For structure identification, the flow structure is
clearly identified with the XA, technique than the typical
jo] technique and identical to the experimental sketch.

1. Introduction
From a computational view point, the most
problematic aspect of turbulence is the wide range of

turbulent eddy sizes. The size and structure of the largest

eddies depend on the flow condition and configuration
(geometry). While the small eddies are much more
universal and have less impact on the flow. Turbulence
can be viewed as a tangle of vortex filament and much of
turbulence physics is explained using the concept of
vortex dynamics. Many turbulent shear flows, such as
mixing layer, turbulent jet, wakes and boundary layer,
have been found to be dominated by spatially coherent,
temporally evolving, vortical motions, usually called
coherent structure. These structures can be identified by
the concentration of large-scale vorticity and significant
energy level and organized by a mean velocity gradient
{1]. Such structures are very important for understanding
‘turbulence phenomena since they responsible for a large
~ part of entrainment and mixing, heat and mass transfer,
chemical reaction, drag, aerodynamic noise generation
"~ and modeling of turbulence.

A distinction can be make between near-wall and
- core stiuctures. An example of core structures are the
‘large eddies usually associated with shear layer instability
such as Kelvin-Helmholtz type instability [2], or
shedding type instability. In near-wall region, the concept

of coherent structures had lead to a detailed description
and mechanism of the phenomena responsible for the
production and the transport of turbulence. Typical
coherent structures in near-wall region include hairpin
(horseshoe) vortices, bursts and streaks.

For detecting the information of this coherent
structure, it is possible to classify into two approaches,
the conditional and the statistical approach [1]. The
first approach consists of detecting from some
condition the passage or presence of a given event.
This detection allows us to collect events, to compute
averages and then to build the main characteristics of
the coherent structure. The second approach involved
statistical information in order to derive the
characteristics of the coherent structure such as the
space-time correlation. For identifying the coherent
structure, if we limit the identification to only the
vortex core, four methods had been summarized by J.
Jeong and F. Hussain [3]

The objective of this paper is to overview the state
of the art of detecting and identifying techniques and

" apply some techniques such as the one-dimensional
wavelet transform analysis, a lambda II (A,) analysis to
the unsteady flow over a bluff rectangular plate. These
numerical simulations have been successfully
simulated in the past in two and three-dimensional
computational domains with DNS and LES techniques
in a wide range of Reynolds numbers [4]

2. Structure Identification/Detection

2.1 Structure detecting techniques

- Two techniques will be investigated in this paper,
the classical Fourier spectral approach and.the one-
dimensional wavelet transform approach. Wavelet
analysis has been used in recent years with
considerable success in variety of fields. The main
advantage is the decomposition of an arbitrary signal
into contributions that are localized in both time and
scale (frequency). In the classical Fourier analysis, on
the other hand, local fluctuation occurring only over a
short duration or intermittently contributes to the
spectrum computed over the entire period of
‘integration and for short duration or intermittent
events, information on their occurrence on the time
axis is lost. Wavelet analysis retains this information
and can be particularly ‘useful in investigating.
phenomena that are non-stationary, have a short-lived
transient component and that are characterized by



different scales. The application of wavelet transform
analysis to turbulent flows has been reviewed by Farge
[5]. The technique was recently used to analyze the
vortical structure in the wake of a bluff body [6] and in a
plane mixing layer [7].

We will briefly outline the background on the one-.
dimensional continuous wavelet transform used in this
investigation. Details on other wavelet transforms and
applications are available in [5] and in a number of
review papers on the World Wide Web. The continuous
wavelet transform is a linear integral transform that
associates a function Wf(s,7) with a signal g(2) and v,
according to the definition;
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Where Wr(s,7) is the wavelet transform function and
g(t) is a time series signal. yyt)is the basic analyzing
‘wavelet (also refereed to as “mother wavelet”). Stretching
(or dilating) by the scale s and translating with location z,

this mother wavelet yields a “daughter wavelet”, y__(t).

The asterisk (*) denotes its complex conjugate. The

normalizing constant (— J‘ ) is chosen so that the energy in

the dilated wavelet function is the same for all scale. The
wavelet energy spectrum can be defined as a distribution
of the energy in the signal g(t) over the wavelet scales.
This form allows the energy in each wavelet scale to be
interpreted in a manner analogous to the Fourier energy
spectrum. ’

E(s)= waWf(s,r)lzdr 3)

Since the wavelet transform is an energy preserving
transformation, we can define the total energy in the
signal as
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where the constant C,, depends on the mother wavelet. In
this study, two wavelet families are selected for the
mother wavelet, the Morlet and the Mexican hat wavelet.
The Morlet wavelet provides good spectral accuracy and
is useful for detecting periodicity in the signal.
Information about both amplitude and phase can be
extracted since the wavelet is complex. The Morlet
wavelet is given by;

(//(t)=e—" /2(6"'1(00!_6—@0 /2) (5)
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For @y » 5, the last term in (5) is negligible. Therefore
the Morlet wavelet can be approximated as;

~t* 72 o "Wt

w(t)=e (6)
The Mexican hat is the classical second derivative of
the Gaussian function and is defined as,

2 —12/2
y(t)=(t —1)e (7)
The Mexican hat wavelet is good for detecting
local increase or decrease of the signal and the
localization of inflexion points (edges or the
discontinuity point). '

» 2.2 Structure identifying techniques

According to Jeong and Hussain [3], four methods

‘had been proposed, a lambda 11 (3 ;), delta (4), Q and
" |l techniques, In present study, we will identify and

compare the flow structure between the lambda II (52)
and || techniques. For lambda ;. technique, the
vortex cores are extracted directly from the
instantaneous velocity fields and identified with a
region of negative ), the second largest eigenvalue of

the tensor S, S, +42,02, , where S; = (Uj; + U,)/2

K°K
and @, = (Uy, - U;)/2 are the symmetric and

antisymmetric parts of the velocity gradient tensor,

ou; . . .
U =%. This method has been successful in
i J

capturing vortical structures, even. in the presence of
strong shear occurring in near wall boundary layers [8]
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Figure 1: Computational domain and schematic of mean flow

around a two-dimensional bluff plate.

3. The Unsteady Separated Flow around a Bluff

Rectangular Plate .
The prediction of turbulent flows with large

regions of separation remains one of the most
challenging problems in fluid dynamics. Such flows
are encountered in a large variety of applications
ranging from turbine blades, to buildings and heat
exchangers. The unsteady flow over a bluff rectangular
plate is a particularly attractive benchmark
configuration that simplifies the study of separated and
reattaching flows, particularly from a numerical
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standpoint. This flow configuration, shown in Figure 1.

For sufficiently large Reynolds numbers, the separating

shear layer becomes unstable, and transition to turbulence
occurs soon after separation. Further downstream, the
free shear layer interacts with the surface of the plate and
eventually reattaches. The separation process is often
accompanied by what has been termed as "flapping" a
low frequency motion with characteristic frequencies
lower than those associated with the Kelvin-Helmholtz
and the subsequent shear-layer roll-up. In the
reattachment region, the flow is characterized by large
scale unsteadiness, and. pseudo-periodic bursting’ of the
separation bubble and ' shedding of vorticity  [9;10].
Further downstream, the reattached boundary layer'does

not recover- to: equilibrium conditions until allowed to"
redevelop over a-long distance. These phenomena have a

profound effect on the dynamics of the flow and on the
transport of momentum, heat and other scalars, and are at
the origin of many of the difficulties encountered by
turbulence models.
In the present 1nvest1gat10n, numencal results of the
flow over a bluff rectangular plate were taken from
previous studied,. This includes 2-D unsteady and 3-D

unsteady simulations with DNS and LES techniques ina

wide range of Reynolds numbers [4].

(a)

Preasure signal

500
Non-dimensional time

(b)

Frequency

Ja“ﬁs’je"“h“" olibiogh ol gl j@s&o ! ~ﬂu

Non-ulmtndonal time

{c)

Frequency

[5)
Non-dimenstonal time

Figure 2: (a) Pressure signal at x/d = 2.0, y/d = 0.5, (b) Mexican

wavelet mab," (c) Morlet wavelet map
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Figure 3: Mean power spectrum of pressure signal at x/d = 2,

y/d = 0.5; (a) Wavelet transform, (b) Fourier transform

4. Results and Discussions

4.1 Two-dimensional simulations
In two-dimensional simulations at moderate

Reynolds number, Red = U,d /,, = 1,000, the Kelvin-
Helmholtz instability of the separated shear layer leads
to the formation, merging and shedding of vortices in a
pseudo-periodic patterin.”“The details of the flow
dynamics and statistics have been documented [3,11].
Typically, the vortex fields can be clearly detected
from the pressure signals. The passage of a vortex at a
given streamwise location ¢an be identified by the
suction peak of the pressure. occurring at the same’
streamwise location. These pressure signals are used in
the current investigation for the analysis of vortex
dynamics. Figure 2(a) shows the selected pressure

signal at location x/d = 2.0, y/d = 0.5.

The energy distribution among the various
frequencies can be visualized on the wavelet map in
Figure 2(b) and 2(c). The contour lines on both figures
represent the high value of the wavelet coefficients.
The resolution of the scales/frequencies and of time
localization vary depending on the basis or mother
function used in the wavelet transform. Here the
Mexican wavelet, which provides good time
localization and the Morlet wavelet, whxch provides
good spectral resolution are used. With the Mexican
wavelet, the peak and the valley (the core of vortex) of
the pressure signal are identified. The periodic pattern
is clearly illustrated by a continuous contour line in
Figure 2c. The concentration of energy is mainly
around the non-dimensional frequency (fa/U,) of 0.08-
0.25. This frequency range correspends to the
dominant frequency characterizing the large scale
shedding from the reattachment region. This range of
values is in agreement with those obtained from Tafti
and Vanka's autocorrelation - analysis [11]. The
corresponding Fourier and wavelet transform spectra
are compared in Figure 3. The frequency peak
obtained from both transforms is identical and is-
centered around the non-dimensional frequency
(fd’'U,) of 0.15
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Figure 4: 3-b LES simulation (a) vertical velocity (v) signal at x/d
= 0.493, y/d = 0.47, mid-span; (b) power spectrum density

4.2 Three-dimensional simulations

In three-dimensional simulation performing with
large eddy simulation (LES) at high Reynolds number,
Rey = 50,000, the trace of the instantaneous vertical
velocity was recorded just downstream of separation
within the shear layer and shown in Figure 4(a). The
power density spectrum of this signal is shown in Figure
4(b). Consistent with experimental spectra [10], high
frequency motion is dominant in the vicinity of
separation, and the spectrum indicates small eddies with
time scales of order of 0.3 tU,/d. In addition to the high
frequency activity centered around f@/U, = 0.8, the signal
also exhibits peaks in the low frequency range (fd/U, .
0.02-0.08). From previous studied [9, 10], this low
frequency motion is attributed with the flapping of the
shear layer.
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Figure 5: 3-D LES simutation (a) near-wall streamwise velocity (u)

signal at x/d = 4.51, mid-span; (b) power spectrum density
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To provide further insight into the flow dynamics
around the reattachment region, Figure 5(a) shows the
streamwise velocity signal at a location close to the
mean reattachment ( x, ) and the corresponding power

density spectrum. Compared to the signal sampled
near separation in Figure 4, there is little energy in the
high frequencies. Most of the energy is in the larger
scales corresponding to non-dimensional frequencies
(f/U,) well below 0.2. ’
A time .domain analysis using the wavelet
transform of the near-wall streamwise velocity signal
was conducted in this region. Figure 6 shows the
wavelet map of this signal, in terms of the relief plot of
the absolute value of the wavelet coefficient. The
intermittent nature of the large scale unsteadiness is
illustrated along the most - distinct range of scales:
tUyd ,, 20-50. This range corresponds to non-
dimensional frequencies of 0.02-0.05 and is associated
with the low frequency flapping of the shear layer. The
intermittence of this phenomenon is clearly shown by

* the alternating peaks and troughs between 45 and 395

time units. The scales containing the most energy are
in the range of 5-15 tU,d, or non-dimensional
frequencies of 0.066-0.2. This coincides with the range
of frequencies reported experimentally for the pseudo-
periodic vortex shedding around reattachment [10].

The time localization of these events shows
activity of relatively short duration, followed by longer
quiescent periods. Furthermore, the signal in Figure
6a shows positive fluctuations about the mean which
are of a much higher amplitude than the negative
fluctuations. This feature and the patterns shown in the
wavelet map suggest that a typical cycle consists of
two distinct phases: (i) gradual growth of large scale
structures in the separated shear layer, accompanied by
a progressive growth of the- separation bubble; (ii)
shedding of a large scale structure followed by a
“collapse” of the bubble and abrupt shortening of the
reattachment length. _

For structure identification, the instantaneous
vorticity field, || techniques, is plotted in Figure 7. In
this figure, the structures close to separation are hardly
discernible, however, three horseshoe vortices are
visible in the reattachment region.

In order to identify the flow structures more
clearly, the technique of Jeong and Hussain [8] was
used. The contour plot of the second largest eigenvalue
(2) is plotted in Figure 8 for the same instantaneous
fields as Figure 7. In Figure 8, the structures are much
more clearly exhibited than in Figure 7. In the first half
of the mean separation bubble, x/d < 2, the strong
background shear along the separated shear layer is
eliminated and only vortex cores remain. These
structures develop at the leading edge of the plate and
are largely two-dimensional in nature.  Further
downstream, in the reattachment region, three-
dimensionalization has occurred and the predominant
structures are clearly identified as hairpin (horseshoe)



vortices. These structures are identical to the sketch
suggested by Kiya and Sasaki [9] based on the
interpretation of conditionally sampled data.
spanwise length scale of the horseshoe vortices in the
reattachment region range from 1.5d to 2.75d which is in
the range suggested in [9, 12].

5. Concluding Remarks

In two-dimensional simulations of the unsteady
separated flow over a bluff rectangular plate at moderate
Reynolds number- of 1,000, the continuous wavelet
transform offers an alternative approach to the problem of
identifying and detecting the flow structures from the
pressure fluctuations of the flow. This approach directly
identifies the dominant time scales and the periodicity of
the signal at any location (time) in the signals. In three-
dimensional simulation at high Reynolds number, the
intermittent nature of the flow can also be deduced from
the wavelet analysis. The characteristic frequencies
obtained from the simulations are in good agreement with
‘spectral analysis of experimental signals.

In three-dimensional simulation at Re; = 50,000, the
flow structures break up and become turbulent right after
the separation. The horseshoe vortices are identified in
the reattachment region. This structure is more clearly
identified with the j, technique than with the typical ||
technique, and identical to the sketch suggested by Kiya
and Sasaki [9]. With Fourier and wavelet transforms
analysis, the characteristic frequencies and intermittent
nature of the pseudo-periodic vortex shedding from the
separated shear layer and the reattachment region as well
as the shear layer flapping were captured. :
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