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Abstract
This paper presents a finite element
computational method for two-dimensional non-

Newtonian metal flow under extrusion.  The thermal
effect from metal deformation and internal heat flow is
coupled in the system. Finite element equations
corresponding to the problem were derived from the
related ‘governing differential equations using the
Galerkin weighted residuals method. The derived finite
element equations were then used in the development of a
computer program that can be executed on standard
personal . computers. The program was verified by
comparing the computational solutions with those
obtained from the metal deformation analysis theory and
the experimental data. More realistic extrusion problerms
were then solved using the developed program for
predicting detailed flow behavior. The program was also
used for the analysis of sheet metal rolling problems.
Results were verified with solutions from theory of sheet
rolling as well as experimental data. The adaptive
remeshing technique was also applied to further improve
the analysis solution accuracy.

1. Introduction
In most of metal forming processes, the external

force is applied to the metal for changing its original -
shape to a final product. The metal deformation passes

from elastic through plastic with large strain behavior.
The solid is incapable to support deviatoric stress without
motion. As a result, it behaves similarly to a fluid. If the
elastic strains are negligibleé compared to the large plastic
strain, the solid ‘deformation may be treated as non-
Newtonian viscous incompressible fluid flow. The
analogy is commonly know as the “flow formulation” {1]
which is a valuable technique for investigating metal
forming behavior.

Temperature is an important parameter of metal
forming. When the metal is deformed, the inside
temperature changes either due to an external imposition
of heat, or due to the spontancous heat generation
following the energy dissipation of the process. Most of
metal forming materials are sensitive to the temperature
change. Another word, the yield stress of materials varies
with the temperature. Thus the deforming process is

significantly related to the thermal coupling. The metal
flow with thermal coupling is governed by a set of partial
differential equations which are the conservation of mass,
momentums, and energy.

This paper studies two-dimensional metal flow
behavior by using the finite element method (FEM). The
method of weighted residuals, together with Galekin

- approach, is used to derive the corresponding finite

element equations [2]. The six-node quadratic triangular
element is selected in the study. A computer program is
also developed from the derived finite element equations.

Applications of the two-dimensional metal flow
presented in this paper are the extrusion of metal billet
pass through square die and the sheet metal rolling. Both
applications have the same objective in order to reduce
the thickness of original shape. For extrusion, the
adequate extrusion force is an important value needed by
design engineer. This unknown is computed from the
developed program as well as the velocity components,
pressure and temperature distributions. The sheet rolling,
application has similar deformation behavior as the
extrusion except the nature of boundary conditions. The
roll force and roll torque are the two desired values of the
problem.

The predicted finite element solutions are
compared with the analytical solution as well as the
experimental data. An adaptive remeshing is also applied
to improve the solution accuracy, to minimize the
required memory of computer and to reduce the
computational time.
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2. Theoretical Formulation
2.1, Governing differential equations

The governing differential equations for
predicting the non-Newtonian viscous incompressible
metal flow behavior are the conservation of mass,
momentum and energy equations. For low speed steady-
state flow, these differential equations are [3],

conservation of momenturns,
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where u and v are velocity components in x and y
directions respectively, p is pressure, p is fluid density,
u is viscosity coefficient, k is thermal conductivity, ¢ is
specific heat, T is temperature, g is effective strain rate
and J is mechanical-heat equivalent value.
For ideal plastic metal flow, the viscosity is in
the form [4],

_ovy(M (5)
o

where g, is the temperature dependent yield and € is
effective strain rate given by [5],

E = 2 (6)
where € is strain rate component.
o Appropriate boundary conditions of metal
" forming problems normally consist of specifying velocity

components as well as heat fluxes along the edges,

u o= U](X, )‘) 7
v = vi(x,y) ™
9 = q(xy)
2.2 The Finite Element Formulation
The six-node quadratic triangular element

suggested in Ref. {6] is selected to derive the finite
element equations. The element interpolation functions
are,

u(x,y) = [NJu} (82)
vix,y) = |[NJiv} (8b)
T(x,y) = |[NJT} (8¢)
p(x,y) = [Hfp} (8d)

where | N | is quadratic interpolation function matrix and
LH_] is linear interpolation function matrix.

The method of weighted residuals with Galerkm
approach (2] is then applied to the differential equations,
Eqgs. (1-3), .
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where A is the element area. Gauss’s theorem is applied
to generate the boundary integral terms associated with
the surface tractions to yield,
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In the above. equations, S, and S, are the element
boundary associated with the mechanical and thermal
load, respectively. By substituting Eq. (4) into Eq. (12),
the above set of equations beécomes,
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Applymg the element mterpolatxon functions for velocity,

pressure and temperature from Eq. (8), the above
equations can be written in matrix form as,
20l S M, o)+ b, ) 11, T
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These finite element equations were used in the
development of a computer program. The program was
then evaluated by examples of metal extrusion that are
presented in following section.

3. Examples of Metal Extrusion

3.1 Square Die Extrusion

The 50% reduction of square die extrusion
problem is used to evaluate the finite element method by
comparing the results with those obtained from the Slip-
line theory. The metal is assumed to be copper. The
contact condition is assumed frictionless and die is rigid.
The dimensions with boundary conditions of problem are
shown in Fig. 1.

~ Container 5 12 » g
By o Die
Ram N 2 &~
N 7 =
% % u=0
\ Billet %
u=1 N 10cm
N
cm/s N 5cm
_& v=_0. L
y Svmmetry
X

Fig. 1 - The 50% reduction of square die forward ..
extrusion problem.

From the Slip-line theory [7], the extrusion pressure, P,

-1s,

P

it

1.3 23)

2T e

where Tyiq is shear yield stress of the copper which is

1,000 kg/cm Thus the extrusion pressure is 2,600
kg/cm

Figure 2 shows a finite element model consnstlng
of 2,337 nodes and 1,112 elements. Because of the
symmetry of the problem, only half model is used in the
computation. The predicted velocity and pressure
distributions are shown i in Fig. 3. The predicted pressure
on ram is 2664.3 k0/cm which is 2.5% different from
Slip-line solution.
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Fig. 2 - Finite element model for square die
extrusion problem.

Die area reduction (%)

Fig. 4 - Comparison of extrusion pressures between the
experimental data and finite element solution for
different die area reductions.

2000 2500 3000 3500 4000 4500

o)

NN NN
1000 500 500 1000 0

(a) 30% die area reduction.

4000
V4 _
3500
(b) Predicted velocity vectors. /7T VN NN
3000 2500 2000 15001000 500 O
}OOO /35 00 /4000 7 (b) 70% die area reduction.
6000
5500
/ 0
2500 2000 1500 1000 500 0 5500 5000 4000 3000 2000 1000
(c) Predicted pressure contours (kg/cmz). (¢) 90% die area reduction.
Fig. 3 - Finite element solution for square die extrusion Fig. 5 - Predicted pressure contours (kg/cmz) of different

problems. die area reductions.
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(a) 30% die area reduction.
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Fig. 6 - Predicted risen temperature (°C) in different
die area reduction.
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Fig. 7 - Predicted risen temperature (°C) in different
extrusion speed.
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3.2 Effect of die area reduction and extrusion speed
to the temperature distribution

A series of experiments for extrusion pressures
in steady-state symmetric forward extrusion has been
performed by W. Johnson [8] using pure lead with well
lubricated condition. The experimental solutions are
compared with the finite element solutions in various die
area reduction. Good agreements are obtained as shown
in Fig. 4.

The predicted pressure distribution for different
die area reductions are shown in Fig. 5. The effect of the
die area reduction and the extrusion speed to the
increased temperature are illustrated in Figs. 6 and 7,
respectively.
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(b) After remeshing.

Fig. 8 - Finite element models and the predicted velocity
contours for both before and after applying the
adaptive remeshing technique.
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3.3 Adaptive remeshing

The predicted finite element solution of the
velocity and pressure distributions can be improved by
applying the adaptive remeshing technique [9]. The
technique places small elements in the regions of large
solution gradients automatically to increase the solution
accuracy. At the same time, larger elements are placed in
the other regions to reduce the total number of unknowns
and the computational time. Figs. (8a) and (8b) show the
finite element models and the corresponding velocity
contours of both before and after applying the adaptive
remeshing technique, respectively.

4. Sheet Rolling

Sheet rolling is one of the important processes in
metal forming. Sheet metal is squeezed in its transverse
direction by plastically deformed passing between rolls
for reducing its thickness. The behavior of plastic
deformation is obtained by solving the set of governing
differential equations as shown in Eqs. (1-3). The theory
of rolling aims at relating the external forces, such as roll
force and roll torque [10], to the mechanical strength
properties of rolled material. The developed program has
been used to calculate these external forces, as well as the
contours of velocity components, pressures and
temperatures through its thickness. The calculation was
performed under piane strain condition. Sheet metal was
rigid-ideal plastic material and the rolls were perfectly
rigid. Non-slip condition was assumed to the contact
surface between rolls and sheet metal.

Alexander and Ford [11] presented the empirical
formulations for calculating the roll force and roll torque
under the plane strain, rigid-ideal plastic and temperature
independent material, rigid rolls and non-slip condition.
Their solutions are compared with the finite element
method. The model of sheet rolling is shown in Fig. 9.
The velocity and pressure distribution are shown in Fig.
10. The roll force and torque are obtained from the
calculation of forces along the contact surface. The
comparing results are shown in table 1.
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Fig. 9 - Finite element model of sheet rolling.
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(b) Predicted pressure contours
Fig. 10 - Finite element solution of follipg problem
Table 1 Comparative results between finite element

solution, and analytical solution [11] for sheet metal
rolling

Finite Alexander Difference
Element | & Ford {11] (%)
Roll Force 9540 9160 42
(kg/cm)
Roll Torque 19880 19050 4.4
(kg.cm/cm)

Sim’s experimental solutions [12] have also
been used to confirm the finite element formulation. Pure.
lead was chosen as the experimental material. The roll’
force and roll torque were measured in different roll
reduction. The comparison with finite element solutions -
is shown in Fig. 11. Figure 12 also shows the effect of the
contact velocity to the temperature increment for sheet
rolling.

Roll Torque ('l‘on.in/in)

2.5[ [a] Experiment 725
= 20[ —O FEM 420
=
e 1.5F 415
— Roll Force
8
2 1.0 4 1.0
=
%05 105

0 0

0 10 20 30 40 50 60
Roll Reduction (%)

Fig. 11 - Comparative finite element sofution and
experimental data [12] for sheet metal
rolling
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(a) Contact velocity 1 cm/s
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(c) Contact velocity 60 cm/s

Fig. 12 - Predicted temperature distribution in different
contact velocities for sheet metal rolling

5. Conclusions

In this paper, the finite element equations were
derived and finite element computer program was
developed - from a set of partial differential equations
representing two-dimensional non-Newtonian metal flow.
These equations are the conservation of momentums, the
conservation of mass and the conservation of energy. The
finite element program was used to solve the extrusion
and sheet rolling problems. The effects of die area
reduction to the extrusion pressure and temperature have
been studied. The higher die area reduction produces the
higher pressure as well as the higher risen temperature.
The velocity solutions at the die corner are improved by
the adaptive remeshing technique. The uséd elements and
the computational time are reduced while the solution
accuracy is maintained. '

Both the extrusion and sheet rolling finite
element solutions obtained from the developed finite
element program are in good agreement with the
analytical solution and the available experimental data.
The paper demonstrates the capability of the finite
element method that can provide insight to the metal flow
behavior under extrusion and sheet rolling.
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