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Abstract ’

A finite element method for analysis of potential
flow is presented. The finite element formulation and the
computational procedure are described. The
corresponding computer program that can be executed on
standard personal computers has béen developed. The
method is combined with an adaptive meshing technique
to increase the solution accuracy, and at the same time, to
minimize the computational time and computer memory
required. The finite element equations derived and the
computer program developed are then evaluated by
examples of flow in a square tube and flow past a
cylinder. The efficiency of the combined finite element
method and the adaptive meshing technique is
demonstrated by the example of flow in a reduced cross-
sectional channel.

1. Introduction

The finite element method is one of the numerical
techniques that has received popularity due to its
capability for solving complex structural problems.
Applications of the method have been extended to a
number of other fields, such as heat transfer,
electromagnetics, and fluid flows. The potential flow is
probably the simplest fluid flow that could be analyzed
effectively. by the finite element method. However, large
amount of unknowns and computer memory may be
required for flow past complex geometry. In addition,
accurate finite clement solution also requires small
elements clustered in the critical flow regions. One way
to minimize the total number of unknowns, the amount of
computer time and the data storage used, is to employ an
adaptive meshing technique. The technique places small
elements in the regions of larger change in the solution
gradients to increase solution accuracy, and at the same
time, uses larger elements in the other regions to reduce
the computational time and computer memory.

The paper starts by explaining the finite element
formulation and the corresponding solution procedure
that lead to the development of a computer program. The
basic idea behind the adaptive meshing technique is then
described. Finally, the finite element equations derived
and the computer program developed are then evaluated
by the examples of flow in a square tube and flow past a
cylinder. The efficiency of the combined finite element

method and the adaptive remeshing technique is
demonstrated by example of flow in a reduced cross-
sectional channel.

2. TPheoretical Formulation and Solution Procedure
2.1 Governing Differential Equation

The conservation of mass for the two-dimensional
steady-state inviscid incompressible flow [1] is,
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where u and v are the velocity components in the x and y
directions, respectively. These velocity components can
be defined in form of the stream function, y, as

u=M and v )
oy ox
such that the conservation of mass is satisfied. For
inviscid irrotational flow,
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Substituting Eq.(2) into Eq.(3) leads to the differential
equation for the potential flow,

Py v,

ax2 ayz = (4)
The above differential equation is to be solved together
with appropriate boundary conditions.  Boundary
conditions for potential flow may consist.of specifying
the stream function,

W‘=\V1(X,Y) (5)
along the inflow and outflow boundary. Along the wall
boundary, the flow velocity is in the tangential direction
with thq_wall;'i.e.,
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where s is the tangential direction along the wall.

After the stream function is computed, the velocity
components u and v can be determined from Eq.(2). The
pressure, P, can then be computed fmm the Bernoulli’s
equation [2] as,

P+ -;—Vz +pgh = constant )

where VZ=u?+v?; p is the fluid density; g is the
gravitational acceleration constant; and h is the fluid
head.

2.2 Finite element formulation

The three-node triangular finite element is used in
this paper to derive the finite element equations. The
element assumes linear mterpolatlons for the stream
function as,

W) =N, y; @®)

where i = 1,2,3; N; are the element interpolation functions
and ; are the nodal stream functions.

To derive the finite element equations, the method of
weighted residuals [3,4] is applied to the governing
differential equation, Eq. (4), i.e.,

J’N

where A is the element area. Gauss’s theorem is then
applied to Eq. (9) to generate the boundary integral terms.
This leads to the finite equations in the form,

e

= J.{N}(—vHum) ds
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where 1 and m are the direction cosines of the unit vector
normal to the element boundary edge, s.

2.3 Computational Procedure

The finite element equations, Eq.(10), are linear and
can be solved by 'standard routine after assembling the
equations from all elements and applying appropriate
boundary conditions. A corresponding finite element
program that can be executed on standard personal
computers has been developed. The main objective in the
development of this computer program is such that it
follows the formulation derived and is easy to understand.
The program has been verified by solving a number of
examples that have exact solutions before applying to
solve more complex flow problems.

“small.

2.4 Adaptive meshing technique

The idea behind the adaptive meshing technique
presented herein is to construct a new mesh based on the
solution obtained from the previous mesh. The new mesh
will consist of small elements in the regions with large
change in solution gradients and large elements in the
other regions where the change in solution gradients is
As an example of a flow past a ~ylinder, small
elements are needed near the cylinder surface to capture
detailed flow field, whereas larger elements can be used
in the region far away from the cylinder because the flow
behavior is almost uniform. To determine proper element

“sizes at different locations in the flow field, the solid-

mechanics concept of determining the principal stresses
from a given state of stresses at a point is employed.
Since small elements are needed in the regions of
complex flow behavior, thus the velocity distribution can
be used as an indicator in the determination of proper
element sizes.

To determine proper element sizes, the second
derivatives of the flow velocity with respect to the global
coordinates x and y are first computed,

[0V &2V
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where V is the magnitude of the two velocity components
uandv,

V=vyu?+v? (13)
The principal quantities in the principal directions X and
Y. where the cross ‘derivatives vanish, are then
determined, :

22
2, |
-0X 2y (14

The magnitude of the Jarger principal quantity is then

selected,
S max( J (13)

This value is used to compute proper element size h at
that locations from the conditions,

’\ZV
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h?A = constant = h%, A, (16)
where hy, is the specified minimum element size, and A
max 1S the maximum pr1nc1pa1 quantity for the entire.
model.
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Based on the condition shown in Eq.(16), proper
element sizes are generated according to the given
minimum element size hy;,. Specifying too small hyy,
may result in a model with an excessive number of
elements. On the other hand, specifying too large hpin
may result in an inadequate solution accuracy or
excessive analysis and remeshing cycles. These factors
must be considered prior to generate a new mesh.

3.4 Examples

Two examples, which are flow in a square tube and
flow past a cylinder, are used to validate the finite
element formulation derived and the computer program
developed.  The capability of the finite element
formulation combining with the adaptive meshing
technique is demonstrated by the last example of flow in
a reduced cross-sectional channel.

3.1 Flow in a Square Tube

To validate the finite element equations derived, an
example of potential flow in a square tube is used as
shown in Fig. 1. The dimensions of the computational
domain with the flow boundary condition are shown in
the figure. The problem has exact solution [5] that can be
used to compare with the finite element solution. The
figure also shows the uniform finite element mesh with
400 triangular elements and 231 nodes. The predicted
finite element solution in form of the stream function is
shown in Fig. 2. The figure shows the finite element
method can provide exact solution for the stream function
distribution along the y-direction at any x-location.

3.2 Flow Past a Cylinder

"~ The finite element formulation and the
developed computer program have been used to analyze
potential flow past more complex geometry. Figure 3
shows the computational domain and the boundary
conditions of a flow past a cylinder. The flow with
uniform velocity enters the flow domain from the left
boundary. Due to symmetry of the solution, only the
upper or the lower half of the flow domain is used in the
analysis. The lower half in Fig. 3 also shows a relatively
uniform finite element mesh used in the analysis with
1200 triangular elements and 656 nodes.

The finite element analysis was then performed
and typical solutions are shown in Fig. 4. The upper half
of the figure shows the predicted streamliines whereas the
flow velocity contours are shown in the lower half of the
figure. The finite element solution is also used to
compute the distribution of the potential function along
the cylinder surface. Figure 5 shows good agreement of
the predicted finite element potential function and the
exact solution [5].

3. Flow in a Reduced Cross-Sectional Channel

To demonstrate the capability of the adaptive
meshing technique combining with the finite element
method, the problem of a potential flow in a reduced
cross-sectional channel is selected. A uniform velocity

flow enters the left boundary of the channel as shown in
Fig. 6. The velocity of the flow increases gradually as
cross-sectional area of the channel decreases. Figure 6
also shows the finite element model with a relatively
uniform mesh. The model consists of 1,113 triangular
elements and 607 nodes. The predicted flow velocity
vectors of the flow field are shown in Fig. 7. The figure
shows a gradual increase of the flow velocity as expected,
except at the upper corner of the lower surface. The
change of the flow velocity in this region is quite farge. It
can be expected that the change of the flow velocity will
be pronounced if the mesh in this region is refined.

The adaptive remeshing technique is applied to
provide more accurate solution to this problem. The
technique starts from using a relatively uniform mesh,
such as shown in Fig. 6, to compute the corresponding
finite element solution. The obtained finite element
solution is then used to generate a new finite’ element
mesh according to the algorithm explained in the adaptive
meshing technique section [6,7]. The new mesh will
consist of small elements in the regions of large change in
the solution gradient. At the same time, larger elements
are generated in the other regions where the change in the
solution gradient is small. Thus, information of the flow
field behavior is not needed prior to analyzing the
problem.

Figure 8 shows the adaptive finite element mesh
after performing the finite element analysis and adaptive
remeshing three times. This third adaptive: finite element
mesh consists of only 266 triangular elements and 153
nodes. The total number of nodes has reduced to 25% of
those by the uniformed mesh in Fig. 6. This is because
larger elements are generated in the regions of relatively
uniform flow field such as near the free stream region.
At the same time, smaller elements are clustered in the
regions of larger change in flow velocity such as near the
upper corner of the lower surface. Figures 9(a) and 9(b)
show details of the mesh and the predicted flow velocity
vectors in this region, respectively.

4. Concluding Remark

An adaptive meshing technique is combined
with the finite element method to improve the potential
analysis solution accuracy. The finite element equations
for the potential flow differential equation were first
derived. The finite element formulation and computer
program have been validated by a number of problems
that have exact solutions prior to solving more complex
flow problems. The adaptive meshing technique was
incorporated to improve the flow analysis solution
accuracy. The technique generates small elements
automatically in the regions of large change in the
solution gradient. in order to provide more accurate
solution accuracy. Larger elements are generated in the
other regions where the solution gradienfs are small in
order to reduce the total number of unknowns and hence
the computational time. The examples shown in this
paper demonstrate the capability and the effectiveness of
the combined adaptive meshing technique and the finite
element method for the potential flow analysis.
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Fig. | — Finite element model and boundary conditions
for flow in a square tube.
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Fig. 2 — Comparative stream function between the exact

solution and the finite element solution.
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Fig. 3 — Finite element method and boundary conditions
for flow past a cylinder.
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Fig. 4 — Predicted stream function and velocity contour
for flow past a cylinder.
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Fig. 5 — Comparative potential function between
the exact solution and the finite element
solution,
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Fig. 6 — Flow in a reduced cross-sectional channel.
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Fig. 7 — Predicted flow velocity distribution in a reduced
cross-sectional channel.
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Fig, 8 — Adaptive finite element mesh for flow in a
reduced cross-sectional channel.
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(a) Detailed mesh of insert A in Fig. 8.

(b) Detailed velocity vectors of insert A in Fig. 8.

Fig. 9 — Detailed mesh and velocity vectors near the
upper corner of the lower surface for flow in a
reduced cross-sectional channel.





