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Abstract

An explicit finite element method for the two-
dimensional inviscid compressible flow is presented. The
finite element equations are derived and its computational
procedure is described. The method is validated by
developing a corresponding computer program that can
be executed on standard personal computers. Several
examples are presented to demonstrate the capability and
accuracy of the proposed method.

1. Introduction

High-speed compressible flow past complex
geometry normally includes several flow phenomena
such as shock waves, expansion waves and shock-shock
interactions {1,2]. Most of these flow features are
characterized by steep gradients that need robust
computational techniques for accurate solutions. In the
past decade, several finite element algorithms have been
developed. These algorithms include the Petrov-Galerkin
algorithm {3}, the least-squares algorithm [4], the upwind
cell-centered algorithm- [5], and the Taylor-Galerkin
algorithm [6].

In this paper, the explicit two-step Taylor-Galerkin
algorithm has been investigated because of its high
accuracy and robustness in capturing complex flow
behavior. The paper starts by explaining the theoretical
formulation and the derivation of the finite element
equations for inviscid compressible flow analysis that
leads to the development of a corresponding computer
program. This Taylor-Galerkin finite element algorithm
is then evaluated by analyzing four problems of: a Mach
3 flow past a wedge; a Mach 2.6 flow in a channel with
compression and expansion ramps; a Mach 6.57 flow past
a cylinder; and a Mach 6.57 flow past two cylinders with
shock-shock interaction phenomenon.

2. Theoretical Formulation
2.1 Governing Differential Equations

The Euler equations for inviscid laminar
compressible flow are governed by the conservation of
mass, momentums, and energy. These equations, in two
dimensions, are written in the conservation form [7] as,
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The vector {U} contains the conservation variables
defined by,

up = & @

where p is the fluid density; u and v are the velocity
components in the x and y directions, respectively; and ¢
is the total energy. The {E} and {F} vectors consist of

the inviscid fluxes in the x and y directions, respectively.
These inviscid flux vectors are given by,

pu pv
2
pu” +p puv
(e} = s {F =y 3)
puv pvi +p
pue + pu pve + pv

where p is the pressure. The total energy that consists of
the internal energy and the kinetic energy is defined by,

g = é+ %(u2+v2) 4)

where e is the internal energy that can be written in the
form,

e = ¢, T ©)]

where ¢, is the specific heat at constant volume, and T is
the temperature.
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2.2 Finite Element Formulation

The basic concept of the explicit two-step Taylor-
Galerkin algorithm [8] is to use: 1) the Taylor series
expansion in time to establish recurrence relations for
time marching, and 2) the method of weighted residuals
with Galerkin’s criteria for spatial discretization for
deriving the finite element equations.

The computation proceeds through two steps. At the
first step, the conservation variable {U} is assumed
constant over the element and are computed explicitly.
At the second step, these constant element quantities are
then used to compute the nodal quantities. Details of such
procedure are given below.

2.2.1) The first step
Using the first order Taylor series at time t = t, ,,,

the conservation variable is written as,

n
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where superscript n and n+1/2 denote the evaluation at
timet=1t andt=t_ +'1 /2> respectively. Then Eq. (1) is

substituted into the right-hand side of Eq. (6) so that,

AtfoE oF[
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Un+l/2 = Un - (7)

Un+1/2

At time .t /0, is assumed to be constant over

element and at time t,, the variable U", E" and F" are
interpolated from the element nodal values as,

Un+1/2 — U2+I/2 (8a)

Ut o= Y NUT (8b)
=

E" = D NE] (8¢)
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where * N j Is the linear interpolation functions for the

triangular element. The spatial approximation given in
Eq. (8) are substituted into Eq. (7). The method of
weighted residuals is then applied over the element area,
Q, to yield the element equations as,

Qurt? = Z[J‘deg U;?J
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Before advancing the solutions to the second step, the
values of U along the outflow boundaries are also
required. The following approximations are used for the
element boundary of edge S,

Un+1/2 - Uls‘l+1/2 (103)

Ut = Y NUS (10b)
j

E" = Y NE} (10c)
j

F' = 3 NP (10d)

where UT*/? denotes the outflow value on the element
edge, N7 is the interpolation functions along the element

edge. The method of weighted residuals is also applied
over the edge length, I, to yield the equations for
computing the element edge quantities,

rum? = ZDderU?}
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2.2.2) The second step
Using the forward and backward first order Taylor

series at time t = t,,;,, , the conservation variables at the

time t,,; are,

n+l/2
Ut = un + aldY

ot (12)

Then substitute Eq. (1) into the right-hand side of Eq.
(12) to yield,

' A jn+/ 2
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In this second step, the finite element interpolation
functions as follows are employed,

> Njur
;

u" (14a)

g™t = 3 Nup (14b)
]



CM-92

/2 _ 1/2
EMV2 = EI* (14c)
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where E?*"? and FP*'/? are computed directly from

U™'2 in Eq. (9). The finite clement equations for
solving the nodal quantities are obtained by substituting

Eq. (14) into Eq. (13) and applying the method of

weighted residuals over the element area to yield,

Z[M,-j(U;‘“ ~Uh] = Atj@l"dg Eo*l/2
- dx
J Q
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In Eq. (16b), 1 and m are the direction cosines of the
outward normal to the surface ['; E**'/? and F?*'? are
the element edge flux vectors along the outflow
boundaries and are computed from U2 directly. If the
values of My in Eq. (16a) are diagonalized,

M; = [Ndo (17)
Q

then Eq. (5) can be computed explicitly to yield an
explicit algorithm.

This explicit two-step Taylor-Galerkin algorithm is
stable under the CFL criterion [9]. The element critical
time step, At,, should satisfy,

A -1
At, = o llintﬂﬂa ! + ] (18)
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where o is the Courant number (0 <o <1), a is the
speed of sound, U and V are the average velocity
" components of the element, X and Yy are the average

element sizes in the x and y directions, respectively.

An artificial diffusion is also needed in the algorithm
to reduce oscillation of the solutions especially near
'shock waves. The Lapidus smoothing [10] is selected to
contribute artificial diffusion into nodal quantities. These
nodal artificial diffusions are determined from,

Z [Mﬁ ( Ujmooth _ U?H )] =
j
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where E™' and E™' are the element artificial flux
components in the x and y directions,

TR el LA (20a)
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where A is Lapidus constant (1 <A <2).

3. Examples

Four examples are presented- to evaluate the
capability of the explicit two-step Taylor-Galerkin
algorithm for analysis of high-speed inviscid
compressible flows. These four examples are: a Mach 3
flow past a wedge; a Mach 2.6 flow in a channel with
compression and expansion ramps; a Mach 6.57 flow past
a cylinder; and a Mach 6.57 flow past two cylinders with
shock-shock interaction feature. All-computations were
performed on a standard personal computer with Pentium
111 600 MHz processor. '

3.1 Mach 3 flow past a wedge

The problem statement of a Mach 3 flow past a
wedge is described in Fig. 1(a). The flow enters through
the left boundary of the computational domain and
creates an oblique shock wave from the compression
ramp. The finite element model consisting of 400
triangular elements and 231 nodes, as depicted in Fig. 1
(b), is used in this study. Figure 1(c) shows the predicted
density distributions represented by contour lines. The
fluid density changes abruptly from the value of one to
2.4 across the oblique shock wave. Because of large
element sizes are used, the thickness of the shock wave
spreads over approximately two elements. The solution
suggests the need of finer mesh, especially along the
shock line, to capture the abrupt change of the flow
density more accurately.

3.2 Mach 2.6 flow in a channel with compression and
expansion ramps

Figure 2(a) shows the problem statement and the
sketch of the flow behavior of a Mach 2.6 flow in a
reduced channel resulting in a more complex flow field.
The flow enters through the left boundary and generates
an oblique shock wave from the compression ramp that
impinges at the upper wall resulting in a reflecting shock.
The mach waves created from the expansion ramp
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intersect with the reflecting shock. The finite element
model consists of 3,504 triangular elements and 1,850
nodes as shown in Fig. 2(b). :

The predicted density distributions represented by
contour lines are shown in Fig. 2(c). The two-step Taylor-
Galerkin method can provide complex flow behavior
from the given finite element mesh. The method
generates an oblique shock wave with correct angle from
the compression ramp. This shock wave impinges and
reflects from the upper wall and is then intersected by the
expansion wave from the ramp. The predicted density
contours highlight the capability of the explicit two-step
Taylor-Galerkin that can capture the complex flow
behavior.

3.3 Mach 6.57 flow past a cylinder

A Mach 6.57 flow past a cylinder creating a bow
shock is illustrated in Fig. 3(a). Figure 3(b) shows a
finite element model consisting of 7,156 triangular
elements and 3,727 nodes. Elements are concentrated in
front of the cylinder and near the cylinder wall to provide
accurate resolution of shock wave and the flow behavior
in that region. Figure 3(c) shows the predicted density
distributions represented by contour lines. The solution
is symmetry for the upper and lower half of the
computational domain. This example is used as a basis
prior to performing more complex analysis in the next
example.

3.4 Mach 6.57 flow past two cylinders with shock-
shock interaction phenomenon

To further evaluate the explicit two-step Taylor-
Galerkin finite element formulation, the interaction of
bow shocks from a Mach 6 flow past two cylinders is
performed. The problem statement and the sketch of the
flow behavior are shown in Fig. 4(a). The mesh in Fig. 4
(b) consists of 13,805 triangular elements and 7,100
nodes. Small elements are clustered between the two
cylinders to capture complex flow behavior in that region.

Figure 4(c) shows the predicted density contours.
The figure indicates that bow shock generated from the
lower cylinder impinges on the bow shock of the upper
cylinder creating a so called Type-IV shock-shock
interaction. Such interaction further creates a strong jet
that impinges on the upper cylinder surface as enlarged in
Fig. 4(d). Figure 4(e) shows the predicted Mach wave
distributions that have sharp change across the bow
shocks. These figures demonstrate the capability of the
explicit two-step Taylor-Galerkin finite element method
that can provide detailed flow behavior for high-speed
compressible flow past complex geometry.

4. Concluding Remarks

The explicit two-step Taylor-Galerkin algorithm for
analysis of two-dimensional inviscid high-speed
compressible flow is presented. The finite element
equations were derived from the Euler equations and a
corresponding computer program that can be executed on
standard personal computers has been developed. Four
examples of high-speed compressible flow were

presented. These examples are: a Mach 3 flow past a
wedge; a Mach 2.6 flow in a channel wich compression
and expansion ramps; a Mach 6.57 flow past a cylinder;
and a Mach 6.57 flow past two cylinders with shock-
shock interaction phenomenon. The four examples
demonstrate that the explicit two-step Taylor-Galerkin
algorithm can provide accurate flow solution behavior for
high-speed compressible flow analysis.
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(a) Problem statement.

(b) Finite element mesh.

(¢) Density contours.

Fig. 1 - Mach 3 flow past a wedge.
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(b) Finite element mesh.
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(¢) Density contours.

Fig. 2 - Mach 2.6 flow in a channel with
compression and expansion ramps.
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(a) Problem statement.
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(¢) Density contours.

Fig. 3 - Mach 6.57 flow past a cylinder.
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(b) Finite element mesh.

(c) Density contours.

Fig. 4 - Mach 6.57 flow past two cylinders with
shock-shock interaction phenomenon. -
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(d) Detailed density distribution.
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(e) Detailed Mach number distribution.

Fig. 4 (con) - Mach 6.57 flow past two cylinders

with shock-shock interaction
phenomenon.





