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Abstract

The present paper is part of the research and.

development project on a numerical wind tunnel in which
engineers can investigate the behaviour of the flow past
an object of any shape. The numerical wind tunnel is one
of the great challenges in the field of fluid dynamics and

engineering applications because the flow can. be studied.

at all speeds and the object of all sizes can be tested and
analysed for design purposes. As the first step, the current
work is carried out to develop the computer program for
two-dimensional compressible laminar flow on a flat
plate. The flow of this type is governed by the continuity,
Navier-Stokes and energy equations, together with the
equation of state. These equations are discretised and
solved by using the MacCormack numerical technique
that is based on the finite-difference method. The velocity
and temperature distributions across the flow domain are
obtained as the computed results and they are compared
with the similarity solutions. It has been found that the
computed results show the interaction of the shock layer
with the velocity and thermal boundary layers.

1. Introduction

Fluid flow involves in many engineering applications,
not only in mechanical engineering, but also in other
branches of science, engineering and technology.
Understanding of the flow behaviour is significant for the
design and development of scientific and engineering
innovations. ‘

In fluid dynamics, the behaviour of the flow is
generally governed by the continuity, Navier-Stokes and
energy equations, together with the equation of state.
Those governing equations can be solved either by the
numerical method or by the analytical method. By the
numerical method, the governing partial differential
equations are discretised into a system of algebraic
equations. By the analytical method, the governing
equations are simplified under certain assumptions into
the equation of simple form that can be readily solved.

Sophisticated computation is now possible with high-
speed and large-storage computers. Thus, the computation
becomes another attractive choice, apart from
conventional experiments. A physical wind tunnel and
highly accurate instruments for flow measurement are
very expensive. As a result, the importance of the
numerical wind tunnel is underlined as an alternative way
to study the flow behaviour effectively and economically.
As a long-term research and development project, this

numerical wind tunnel is aimed to be able to simulate the
internal and external flows at all speeds. For internal flow,

- the cross-sectional area of the numerical tunnel can be

made to any shape to suit the applications. The effects of
the external flow on the object of .any shape can be
investigated when it is placed within the numerical tunnel.
Unlike the physical wind tunnel, any kind of fluids
can be. studied within this numerical tunnel since there is
no limitation of study in any dangerous situation. One of
those circumstances is when the fluid is contaminated by
radioactivity or dangerous substances. This is the
motivation of the present work to develop a numerical
wind tunnel. The first step of the development is to
simulate steady compressible laminar flow on a flat plate.

2. Governing Equations

Compressible flow is governed by the continuity,
Navier-Stokes and energy equations, together with the
equation of state. For two-dimensional flow, the
governing equations can be written in terms of tensor
notation (where i = | and 2, corresponding to x and y
directions respectively) as follows:

Continuity equation
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where p is the fluid density and U, is the flow

velocities.

Navier-Stokes equations
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where p is the pressure and T is the stresses which can
be defined as: |
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where | is the fluid viscosity and Sij is the Kronecker

defta: &, =0 for i # jand &, =1 fori=j.

Energy equation
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where €, is the total energy of the flow which is defined

in terms of the internal energy, e, and the kinetic energy
as:
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and q; is the heat flux which is defined by Fourier’s law

of heat conduction as:
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where T is the temperature of the flow and k is the
thermal conductivity of the fluid. For the calorically
perfect gas, the internal energy can be defined as:

e=c,T @)
where C is the specific heat at constant volume.
Equation of state

p=pRT ®)

where R is the gas constant.
With the above five equations, Equations (1), (2), (4)
and (8), there appear five dependent variables, that is, P,

u, v, p and T so that this system of equations has the
closed form. However, the fluid properties, {t and k, in

the compressible flow are changed as the temperature
varies so that they must be defined in terms of
temperature by the following refations:

Sutherland’s law
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where [l and T_ are the viscosity and temperature at
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standard sea level conditions respectively.
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Prandtl number
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Pr= (10)

where C_ is the specific heat at constant pressure.

3. Numerical Method
The governing equations can be expressed in vector
notation for simplicity as follows:
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where U is the solution vector, and E and F are the x- and
y-flux vectors respectively as follows:
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The governing equations can be solved numerically
by the finite difference method. In the present work, the
MacCormack technique is employed to discretise the
governing partial differential equations into the finite
difference equations. Using a Taylor series expansion, the
solution vector at grid point (i,j) and time t + At can be
expressed about that at grid point (i,j) and time t as:
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Equation (16) is calculated by the following two steps:



Predictor step

U—gm is predicted by using a Taylor series
expansion of —ﬁ:;m about U;‘j:
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Then, Equations (18) and (19) are used to calculate
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where E:;A‘ and F‘—if;m are calculated by using U

Finally, U™ is corrected by Equation (15).
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Calculations of U:;m are made repeatedly until the

flow reaches the steady state where the dependent
variables no longer vary with time.

4, Similarity Method

The governing equations can be solved by the
similarity method. The idea of this method is to define
appropriate variables to reduce the number of governing
equations and then define similarity variables to transform
the partial differential equations to the ordinary
differential equations. For the current work, the
lllingworth transformation is adopted to solve the
governing eqaations of steady compressible boundary
layers on a flat plate where the streamwise pressure
gradient is equal to zero.

The stream function Y(X,y) for compressible flow

can be defined as:
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By the definition of the stream function, the continuity
equation can be eliminated.

The similarity variables (§,7) can be defined as
22)
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where the subscript oo denotes the freestream. Using
these similarity variables, the x-component of the Navier-
Stokes equations can be transformed to the following
ordinary differential equation:

n(x,y) = (23)
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where f is the transformed function and depends on T)

only, and C is the Chapman-Rubesin parameter which is
expressed as:
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Using the equation of state and Sutherland’s law, C can
be expressed in terms of temperature as:

()

The value of C can be obtained at a reference

temperature T, that is, C=C" where T  is defined
by the empirical Eckert correlation:
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where M is the freestream Mach number and T, is
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the wall temperature. Thus, Equation (24) can be
simplified to

Cf"+ff"=0 (28)

with the following boundary conditions:



£(0)=0 (29)
f’(0)=0 (30)
f'(e0) =1 @31

For boundary layers, the y-component of the Navier-
Stokes equations is simply reduced to a zero cross-stream
pressure gradient. Since the energy equation is coupled to
the x-component of the Navier-Stokes equations, the
temperature-velocity, or Crocco-Busemann, relation is
employed to determine the temperature distribution:
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where Y is the specific-heat ratio, r is the recovery factor
defined as:
r = +/Pr for laminar flow 33)

and T,, is the adiabatic wall temperature defined as:
-1
T, =T |1+ 12
2
Results and Discussion

5.
Steady compressible laminar boundary layers on a
flat plate are studied at three freestream Mach numbers:

2
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M _= 2, 4 and 6. Flow conditions are summarised in
Table 1.

Table 1 Flow conditions

Physical Parameter Value or Type
Plate length (L) 0.01 mm
Fluid Air
Y 1.4
Pr 0.71
287 J/kg.X
c 1005 J/kg.K
P
T 288.16 K
p.. 101325 Pa
P 1.23kg/m’
1 1.79x107° keg/m.s
T, T,
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The height of the computational domain is specified
by

H=5 SL

Vp.U.L/p_

The mean free path of a gas can be estimated by the
following expression:

(35
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which is recommended by White (1999). With the
freestrggm condition in Table 1, the mean free path of air

£=1.26

(36)

is equal to 6.4X107® which is very small compared
with the computational domain LXH. Thus, the
treatment of air as a continuum is valid here. '
The numerical solutions have been carried out by
using 20x 20, 40X 40 and 80x80 grid points. The
40x 40 solutions are considered as grid-independent
results because the difference between 40X 40 and
8080 ones is so small.
The size of the
MacCormack (1988) as:

time step is suggested by

At = min|[C(At), ] 37)

where C is the Courant number (0.5<C< 08) and
(At )i‘ ; is the local size of the time step at grid point (i,j)

defined as:
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where U, ,,

v;; and ¢;; = [WRT,; are the local
values of the streamwise and cross-stream velocities and
the speed of sound at grid point (i,j) respectively and Vi'_ i

is defined as:
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where D;; and J; ; are the local density and viscosity of

the fluid at grid point (i,j) respectively. For the present

numerical solution, the Courant number is taken as 0.6.
Initial conditions are specified by the freestream

values and boundary conditions are specified as follows:

At the leading edge of the plate or at grid point (1,1):
U, =v, =0

T, =T.

P11 =P

At the plate, or at grid points (i, 1), except grid point (1,1):

u, =v;,; =0

T, =T

il T tw

Piy =2pi; —Pis

At the inlet or at grid points (1,j), except grid point (1,1):

u,;=U,
vy =

T,=T.
P1j =P~

At the outlet or at grid points (imax,}), except grid points
(imax,1) and (imax,jmax):

u. . =2u u

imax imax-l,j - imax-2,j
Vimax = 2vimax—l.j - vimax—Z,j
Timax = 2Timax—l,j —Timax—z,j

Pimax = 2Pimax—1.j ~ Pimax-2,j

At the upper boundary of the computational domain:

dy dy dy dy
The fluid density at the boundaries of the computational

domain can be calculated from the equation of state.
The converged solutions are obtained when the
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density at each grid point changes less than 107
between time steps. The distributions of the streamwise
velocity and temperature across the flow at the trailing
edge of the plate are plotted for analysis where the

... u .
normalised streamwise velocity is TJ—— the normalised

o0

T
temperature is —f— and the normalised cross-stream

distance -——-——L——— .
. /p U

The computed results of the streamwise velocity at
freestream Mach numbers M _ = 2,4 and 6 are shown in

Figures 1, 2 and 3 respectively in which they are
compared with the similarity solutions at corresponding
Mach numbers. It is found that the trends between the
computed results and the similarity solutions are similar
except that the shock can be captured by the numerical
method while the similarity method cannot.

As the Mach number increases, the numerical
solutions show that the shock layer becomes thinner while
the similarity solutions demonstrate that the velocity
boundary layer is thicker.
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Figure 1 Velocity distributions at M _ =2

-+ Numerical solution
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Figure 2 Velocity distributions at M _ =4

""" Numerical solution
154 — Similarity solution

Normalised cross-stream distance

Normalised streamwise velocity

Figure 3 Velocity distributions at M_ =6
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The computed results of the temperature at freestream
Mach numbers M _ = 2, 4 and 6 are illustrated in Figures

4, 5 and 6 respectively in which they are compared with
the similarity solutions at corresponding Mach numbers.
Both the computed results and the similarity solutions
show almost the same peak of the temperature near the
wall. As found in the velocity distributions, the shock is
also observed in the numerical solutions of the
temperature.

As the Mach number increases, a decrease in the
thickness of the shock layer is found in the numerical
solutions whereas an increase in the thickness of the
thermal boundary layer is detected in the similarity
solutions.
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Figure 4 Temperature distributions at M _=2
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Figure 5 Temperature distributionsat M _ =4
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Normalised cross-stream distance
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Figure 6 Temperature distributions at M_=6

6. Conclusions

Both numerical and similarity solutions of the
compressible laminar flow on a flat plate are presented in
the present paper. The numerical method is capable of
capturing the shock occurring in the flow while the

similarity method cannot. The shock forms the layer
along the plate leading to an interaction of the shock layer
with the velocity and thermal boundary “layers. This
interaction becomes more obvious when the numerical
solutions are compared with the similarity solutions where
there exist only the velocity and thermal boundary layers
with no shock. It has been found in the numerical
solutions that the shock causes the velocity and thermal
boundary layers thicker as the Mach number is decreased
from 6 to 2.
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