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Numerical Solution to 1- and 2-D PDEs Using Wavelet Collocation Technique
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Abstract

A wavelet collocation technique, based on the auto-
correlation function of Daubechies compactly supported wavelets,
has been applied to solve a nonlinear 1-D and a linear 2-D PDEs
of Dirichlet boundary conditions. Effects of the number of filter
coefficients on numerical accuracy have been studied. The 1-D
study uses the Burgers equation with a small viscosity as a
model problem while the Laplace-conduction equation is used for
the 2-D study. The numerical solutions obtained are compared
with those obtained from the customary finite-difference method
and the analytical solutions where possible. The numerical results
indicate that the method is accurate and has the potential for

solving more complicated problem.

1. Introduction

In recent years, the development of wavelet theory has

attracted tremendous interest in many areas of research. One of
them is the application to partial differential equations [1-5].
Wavelet-based methods have several attractions, for example,
they negotiate well local sharp variations that usually cause
convergence problems with the spectral methods [1, 6-8], and
they are tolerant to the phase error problem when solving wave
equations with ﬁnite_-difference methods [6, 8]. In wavelet
applications to the PDE problems, one of the most frequently
used wavelets is the Daubechies compactly supported one [2-3,
9]. Most wavelet algorithms can be easily treated when the
boundary conditions are of periodic type [see eg. 1, 3, 8]
However, difficulties arise when applying such methods to solve
the equation with Dirichlet boundary conditions. Wavelets are
naturally bases on line so they can give rise to some instability
when one uses them, without modification, in solving a Dirichlet
boundary value problem on an interval. Recently, a Wavelet
collocation technique based on an auto-correlation function of
Daubechies compactly supported wavelet has been proposed [4].
The auto-correlation function verifies the so-called interpolation
its dilations and translations

property, and generate a

multiresolution analysis. These allow approximation of the
solution in terms of its values at dyadic points, which verify the
collocation framework of the interested problems. The boundary
conditions can then simply be imposed at both ends of the
approximation solution.

This paper is organized as follow: in section 2, we
review the basic theory of the Daubechies compactly supported
wavelet, its auto-correlation and the application of the auto-

correlation function to the collocation technique. Section 3

demonstrates the solution to the Helmholtz's problem as a test
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probiem. The effects of the number of filter coefficients on
numerical accuracy are studied. in section 4, we obtain the
numerical solutions to the viscous Burgers equation from the
wavelet collocation method. The results are then compared with
those obtained from other numerical methods. Thereafter, ‘the
algorithm for a 2-D problem is applied to the Laplace-conduction.
The result agrees well with the exact and finite-difference
sofutions. The last section concludes the study with a discussion

on future direction for research.

2. Theory
2.1 Descriptions and basic properties of the auto-correlation
function of Daubechies wavelets

In this section, some properties of the auto-correlation
function of Daubechies compactly supported scaling function are
reviewed. To define Daubechies wa\-/elet [10], consider the
following two functions: ¢, (x) which is a solution of the scaling

relation
L-1
0, (x)=v2) 19, (2x-k) (1)
k=0

and the associated wavelet function defined by

‘I/L(x)=‘/-Z—LZJ(‘I)I("L—ML(ZX"C)- @

Where the function ¢, (x) are called the scaling function
(sometimes calied “father wavelet"). The filter coefficients f, are

a collection of coefficients that categorize the family wavelet

basis. In order to form an orthonormal basis for L’ (R) the
space of square integrable functions on the real line, from the
dilationc and transiations of the wavelet function,
Zjl//(ij~—k>. and to have some degree of smooth scaling
and wavelet functions, the filter coefficients must satisfy the

following conditions:

Normalization:

L-1
St -z
k=0
L1

Orthogonality: 3 hhy 5, =8,
k=0

k=0

Correspondingly, the constructed scaling function @ (x) and the

assaciated wavelet function iy L(x) have the following properties:

i jm(ﬂix =1
ii) J‘¢L(x)ﬁL (x—k)dx =8y
il I¢L(x)ﬂL(x—k)dx =0

w [y =0, for [=1.2...M ~1.

The vanishing moment property iv) is equivalent to the polynomial
{I,x,xz,...,xM—I} written in linear combinations of scaling
function, @, (x) and its integer translations, ¢, (x—k)[11]. For
the Daubechies compactly supported wavelets, the number [ of
the coefficients in (1) and (2) is related to the number of
vanishing moment M by L=2M , and the support of
Daubechies scaling function,
[o,L—1] (o

Let V; and W;, respectively, be the space spanned

¢r(x). is in the interval

by the dilation and translations of the scaling function and wavelet

function:

V; =span{2j/2¢L(2jx—k)k€ Z}
and

W; =span j/ZWL(ij-k)ke Z}
Then the following properties hold:

Vj+1 :Vj @WJ

eV, v, cV,cu

N7V, =0} and U™ v; =L(R)

where @ denotes the orthogonal direct sum. Therefore, the

sequence ‘of successive approximation spaces V j constitutes

the multiresolution of LZ( R)[12].
Let G(x) be the auto-correlation function of the

Daubechies scaling function [4, 13-14],

6(")‘_[%()’)%()"1‘)@- (3)



As a consequence of the .scaling function, the auto-correlation
function satisfies the following properties:
1) The support of O(x)- is in the interval
[FL+1L-1].
2) By using the scaling relation, one can show that
the function G(x), also, has the scaling relation.
3) Due to the orthogonality property between the
scaling function and its integer translations, the

function B(X) verifies the so-called interpolation

property, that is
9(")= J"PL()’)PL (y-n)dy =8gp -

4) As a consequence of iv), a polynomial of order
less than L can be written as linear combinations
of B(x) and its integer translations.

The function G(x') corresponds to the scaling function of
interpolating wavelet {14-15). Figure 1 shows the Daubechies

scaling functions with L=6 and L=10 and their

corresponding auto-correlation functions. By defining space Vj

as the linear span of the set b(.?jx —k) ke Z}, the sequence

of {V i JE Z}, also, constitute a multiresolution analysis of
r (R) and the set %(Zl x—-k)ke Z} is a Riesz's basis for
‘7]- [4]. The auto-correlation function 9(x), similar to ¢L (x)

provides us bases on real line. In this study, the analysis is
confined within the interval [0,/]. Modification of 8(x) to be
bases on the interval [0,1] having the same accuracy as that on

the line can be found in [15]. Thatis, for j>log,( L)+ 1

0L (x)=0,4(x)

=B(ij——k)+ Za,,,ﬁ&jx—n),k=0,1,..4,L——1,
n=—L+2
Bj’k(x):Q(ij—k).k=L ..... 271 @)
gfk(x)zej,k(x)
. 2eL-2 _ .
:eﬁfx—k%- }thﬂ&jx—n)k=21—L+lwwﬁ
n=27+]
where a,; =1jl]( (xj,n) cand by :lﬁ( (xj‘,,)
L LD v, 2/ X—X;i;
A ,
[jk(x):l—-[‘—ﬁl“ . and lj’i(x)z H L
P =2l _pep KT
izk i#k

and x ;g =—.
ik Y

It is obvious from (4) that the function Bj.‘k and Gjl.ek still
preserve the interpolation property i.e. Bf:k (x jn )= 5,,’/( , and

Oﬁijm)=5nﬁ.mrn,k=OJ"w2ﬁ

It is important for the application to be able to recover

an arbitrary function from a discrete set of sampled values. Let

,,,,,

.....

sampled values. To recover the function f , one can define the
interpolation operator that maps the sampling values of the

function to the

ij [0,1]= span%j'k (x), k=0..27 }:

space  spanned by ej,k' ie.

2’1

1F = flepi). (®)
k=0

From the interpolation property of function 0 ko [ j [ equals

exactly to function f at the sampled points. The approximation

property of the operator | j is stated elsewhere [4,15].

(a (b)

(c) (d)

Figure 1. (a) Daubechies compactly supported scaling function with L =6
(b) The auto-correlation function of (@)
(c) Daubechies compactly supported scaling function with L =10

{d) The auto-correlation function of (c)
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2.2 Wavelet collocation technique

The wavelet collocation technique used in this work
was proposed by [4]. lnfonﬁation on other wavelet collocation
techniques can be found in [16]. To implement the algorithm,

consider a Dirichlet boundary value problem:

Au =g ,xe(01) 6)
u(0)=a
wl)=b

2
d d

where A is the operator —a;( x )—=+as(x)—+ajz(x).
dx? dx

The functions a;(x), ay(x), and ajz(x) are bounded
functions verifying a; >0, a, >0 and g(x) is the
nonhomogeneous term. We approximate the unknown solution

u(x) by u;(xj)e V, [0,1], ie.

21

uy(x)= Zul.kej,k(x)

k=0

0

where the coefficients uj ; =uy (xj,k =k/2]) are unknown.

The d'h derivative of u; are
2]

uSd)(x)z Eujykegi)(x)
k=0

The derivative of function B(X) can be evaluated by
0 w)=(~1)* [0, (YW (y - .

For the integer value of x, ol (n) can be evaluated exactly
by using the method proposed in [9]. By following the collocation

approach, problem (6) reduces to

Ajuy(xyp)=8(x;4) .k =12..2" -1
0)=
w(0)=a (8)
u,(l)=>b
2

d d
where Aj =aj(x; )—2—+02(X1'k )—"+‘13(x1,k)' As
dx dx

seen from above, the boundary conditions are u;, =a and
U,y = b . After solving the system (8) for U . we then obtain

the approximation solution by substitution in (7).
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3. Solution to the Helmholtz's problem

In this section, we use the Helmholtz's problem-a_s a
test problem for demonstrating the effects of the number of filter
coefficients, L, on numerical accuracy. The numerical results
obtained from the wavelet method are compared with that from
the customary finite-difference method. Consider the following

boundary value problem:

d’u [ 167°
pend el (VLSS
u(0)=1 9)
u(l)=6.25
where
f(x)=—2567t2 sir{f%{x]sin(“s%x)+
1287° co 4—ﬂx co. —M—”x
3 3

The exact solution to this problem is

/4

f4n \ (16 4ir
w x})=9sinf — x |si X |+cos] —x (10)

The problem (9) is discretized into collocation framework, hence

2!

167*
N8 x, )+ o Wn=fan=12.,2" 1
k=0
ujp =1
11)
u, =625 (

where f; =f(x,‘,,).
The solutions from the wavelet method (L = 10, and
J =5), finite-difference method, and the exact solution are

compared and shown in figure 2.

To evaluate the numerical accuracy, define
"u" = max lu(x, kl and the maximum residual error
T k=227

by "uww -u‘,"h”. Figure 3 shows the maximum residual

errors when using the wavelet method (L =06, 8, 10, 12, and
14) and the finite-difference method for various numbers of
degrees of freedom (number of collocation/grid points). The figure
clearly indicates that more accurate solutions are obtained when
higher order wavelets are employed. Note that the reflections or
flattening in the graph (L =8 to 14 ) occurs from the round off

errors introduced by the computer. The slopes of the above



graph, before the onset of the round-off -errors, are —(L—2),
representing the maximum residual error decay rate, more
precisely, "uexac, —uy "],m =027 -2) }. Note that, the
results agree well with those obtained by the wavelet Garlerkin
technique which uses the capacitance matrix method in boundary

treatment [17].

u(x)

FIOUS RSN SIN TRV U VAP SATU SR G i
02 04 06 08
X

Figure 2 Solutions to the Helmholtz problem using the wavelet
collocation methods (L =10, J =5 ), and finite-difference

technique (33 grid points) compared with the exact solution.

‘Iogz(qnor) )

N
b ~ 7
30} ‘ N »
[ N ~

P S S A T |

—
\.

: ’ 250 500 7501000
Number of coliocation/grid poitns

Figure 3 Maximum residual error vs. number of degrees of freedom

4. Solution to the Burgers Equation

In this section, we consider Burgers equation, which
represents a first step in the hierarchy of approximations of the
Navier-Stokes equation. The problem combines both the
nonlinear convective and the diffusive effects. Numerical solutions

to other problems that simplify Navier-Stokes equation e.g. the

combined Couette-Poiseuille flow, Stokes oscillating plate, and
flow in a slot with an osciflating pressure gradient have been

shown in our recent work [18]. Consider the Burgers equation
(12)

with initial and boundary conditions
u( x,0)=—sin(7x) (13)
w(-Lt)=u(lt)=0.

In this work, the viscosity is kept small, v =1/ 10007 . We use
3% Adam-Bashforth

discretization of the convective and diffusive terms respectively

and Crank-Nicolson for  temporal
[7] while the wavelet collocation is used in spatial discretization.

Therefore, the full discretization of (12) and (13) becomes

aG &

. -q 2p(1

iy =y, “4—2%2(“7.{1) 074 (x 1) (14)
g= k=0

2/ 27
] A 12 . A 2
uf;? —?VZuTZ stk)( Xyl )= Uy +—é—v2u7'k6$’k)(xj,1 )
k=0 k=0

ul o =-sin(m(2x,, 1)), k=122 -1
where

(=122 -1

Note that, in the numerical calculation, the domain of (12) and
(13) is transformed from x&(—/1,1) to x€(0,]). In solving
(14), we fix the stepsize of time to be // 1000 . Figure 4 shows
the solutions at different times when J =7 (figure 4a) and
J =10 (figure 4b).

The numerical results are analyzed by following the

method presented in [6]. The method compares the values of the

maximum gradient, g"" . and its corresponding time, £, . .
M rmax

obtained from the numerical solutions with those obtained from

the  analytical solution. The  analytical values are

,%, =152.0051 and t,, =160377. The numerical
max

results obtained for various numbers of [, and J are given in

Table 1. From Table 1, for each number of L (=6,10,14), the
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maximum gradient

%‘il converges to the analytical value
X max

when J is increased and vice versa. All values of t,.ac Jeviate
slightly from the analytical value. From table '2, It has been shown
that the wavelet collocation technique is competitive to the
Chybyshev collocation and the Fourier Garlerkin spegtral
methods. However, there is an advantage in thaf the errors, when
using wavelet collocation, do not spread over the calculated
domain (see remark in Table 2). Also, the method is superior to

the finite-difference when uniform grids are used.

075 F

05

025 /i,

025 |
05

075

0751

(b)

Figure 4. (a) Solution to the Burgers equation using wavelet method at
m=02061014,16 and! 8 when =10 andJ =7
(b) Solution to the Burgers equation using wavelet method at

m=02061014,16 andl.8 when (=10 and J ={0
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Table 1: Maximum gradient and the corresponding time for different

number of filter coefficients ( L ) anc scale(J )

L J Degrees of B_u‘ o ax
freedom 9lmax

6 7 129 80.1985 1.588

8 257 115.1846 1.597

9 513 140.5537 1.602

10 1028 150.1580 ' 1.603

11 2049 151.8397 1.604

10 7 129 91.6758 1.580

8 257 128.2925 1.599

9 513 148.3872 1.603

10 1025 151.8764 1.604

" 2049 152.0043 1.604

14 7 129 96.7952 1.590

8 257 132.5939 1.600

9 513 149.8566 1.603

10 1025 151.9731 1.604

11 2049 152.0054 1.604

Analytic 152.0051 1.6037

Table 2: Numerical results obtained from different techniques -

Methods Iﬂl T uae | Degrees AL remark
x| max .
of (16]
freedom
M1[6] 151.94 | 1.6035 | 682 5x10" | NO
14267 | 1.60 682 10° S0
14898 | 1.603 | 170 5x10° | so
M2[6] 14588 | 1.60 512 5x10° | s0
M3(6) 15264 | 1.6033 | 16x 4 10%% | NO
Ma4(6) 150.14 | 1.63 81 10” NO
Ms(19] | 66.77 1587 | 129 10” Lo
10208 | 1599 | 259 10” Lo
131.34 | 1602 | 513 10° NO
14565 | 1.603 | 1025 10° NO
Analytic | 152.005 | 1.6037
Note: M1 - Fourier Galerkin spectral method

M2 - Chybyshev colication method

M3 - Uniform spectral element

M4 - Finite-difference with stretching grid
M5 - Finite-difference with uniform grid
NO - No oscillation

SO - Spread oscillation

LO - Localized osciltation

5. Solution to two-dimensional Laplace-conduction problem
The wavelet collocation technique can be generalized
to a rectangular two-dimensional domain. The two-dimensional

bases are constructed from tensor product of the one-dimensional



function, i.e.

01k k(%) =0u(x Bk (y) k. k' =01..27  (15)

where the one-dimensional function 0 jk is defined by (4). The

constructed bases can be used to approximate the solution of
two-dimensional problems.
Consider the classical Laplace-conduction equation

with Dirichlet boundary conditions:

VI?=0 , xye(01)
T(0,y)=0;, T(1l,y)=0

: (16)
T(x0)=0 ; T(x,1)=80

where the exact solution to this problem is

320

1 . .
T( X,y )= Z WSW( nnx )sinh( nn’y) . (1

k=135,...

Note that the contributions of the terms after k = 10] are very

small. The solution to the two-dimensional problem is
approximated by
2’ 2
Ti(xy)= 2 ZTJ,k,k'el,k,k'( xy)
k=0k'=0

where the coefficients Tj ¢ v =Ty( x5 1, yj'k') are unknown.

The discretization of (16) in coliocation framework is

2! 27 2
06, i ( Xy,.Y11)
TS o +
k=0k'=0 X
21 2] 2 b
96wl Xy ¥11) _
T 352 =0
k=0 k’=0 y

T)(0.y;,)=0:T;(1,y;,)=0 .
T/(x.’,ﬂ’o) =0,'T,(x/‘n,1) =80

where nl=12,..2" =1, x; .y =2L1

Figures 7a and 7b show, respectively, the numerical
solution of temperature contours and its absolute errors obtained
from the finite-difference method. The numerical-solution using
wavelet technique (L = /0, and J =35, and its absolute errors
are plotted in figures 8a and 8b respectively. The errors of both

methods are noticeable at the tbp-left and top-right corners. The
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errors, however, are confined within very small regions for the

wavelet case.

6. Conclusions

The Helmholtz's problem, the viscous Burgers
equation, and the two-dimensional Laplace-conduction equation
with Dirichlet boundary conditions have been solved by using the
wavelet collocation technique which uses the aufo-correlation
function as bases. The numerical results indicate that the wavelet
method provides us with a high accuracy solution and-the method
is competitive to the well-known spectral methods and superior to
the finite-difference method. Also, the algorithm can be
generalized to a higher dimension in the rectangular domain.
Although the one- and two-dimensional problems with Dirichlet
boundary have been solved, boundary treatments using other
wavelet bases are still an open problem. The approximation of
the solution at multiresolution using wavelets bases would be the

area of our future research.

02

T T
% 0.25 05
X

(b)
Figure 7. (a) Temperature contours of the Laplace-conduction problem
using finite-difference method with 33 X 33 grid points

({b) The corresponding absolute errors of (a)



FRIFITES SRS SYSTETEI Ararmrawel i
0.25 05 0.75 1
x
(a)
1—
0aH
[
L
o6
1
> -
nt
ozé
PY rueraraerth mrarSTIIE BEWIRNTSS ErarEe B
0 0.25 0.5 075 1
x
(b)

Figure 8. (a) Temperature contours of the Laplace-conduction problem
using wavelet collocation technique with L=10, /=5
(33X 33 collocation points)

{b) The corresponding absolute errors of (a)
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