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Abstract

Temperature measurements-at boundary are used to
determine boundary heat flux applied to a multidimen-
sional body. The boundary. elcment method is used as the
method of solution becausé it prov1des direct relationship
between boundary heat flux and boundary temperature. A
sample problem is shown to demonstrate the eﬁ’ectxve—
ness of this technique.

1. Introduction

Conventional measurement-of -boundary heat flux is
usually performed directly by using a sophisticated device
such as Sandwich-type heat flux gauge,-circular foil heat
flux gauge, or calorimetric .gauge [1]. This not -only
makes the measurement -expensive but also introduces
large errors. On the other hand; surface temperature mea-
surement is aﬁ"orded by several well-established -tech-
niques. Some of them do not require expensive devices.
The possibility of determining heat flux from temperature
measurements has ‘long been recognized [2]. However,
due to the fact, in addition to-temperature measurements,
the solution to the- relevant heat conduction problem is
needed, this. technique of: measuring heat flux has not
been as widely paid attention to as it should be. The prob-
lem of determining boundary heat flux of a multidimen-
sional body from interior temperature measurements is
known as the inverse heat conduction problem. A few
numerical techniques have been proposed for solving
such a problem [3-5]. It is well known that the solution to
the inverse heat conduction problem with interior temp-
erature measurements as input data is subjected to insta-
bility. However, if boundary temperature measurements
are used instead, the solution will be stable. Moreover,
using boundary temperature measurements as input data

in estimating boundary heat flux is advantageous in that.

it is easier to implement in practice and that the numeri-
cal solution can be made efficient by employing the boun-
dary element method, which relate boundary tempera-
tures explicitly to boundary heat flux components. This
paper will present a formulation of the boundary ele-
ment method for solving the inverse heat conduction
problem. It will be shown that this method is efficient
and capable of giving an accurate solution.

2, Statement of the Problem
Consider a solid object with part of its boundary I
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subjected to known heat flux and the remaining part of
the boundary I'; subjected to unknown heat flux. Suppose
that the object has constant thermophysical properties,
making the problem a linear one. Without the loss of
generality, we can take the value of the thermal diffusiv-
ity to be unity and the initial condition to be uniformly
zero. The heat. conduction process can then be described
by the following equations.
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where n is the outward pointing unit -vector normal to
boundary and g is the known boundary heat flux. In order
to render the probiem solvable, the temperature measure-
ment data must be specified.
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where 7, is a sensor position vector, and Ar is the meas-

urement time step. The temperature sensors are located
on the boundary.

3. Boundary Element Method

The boundary element formulation for a transient
linear heat conduction problem is given by [6]
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where a depends on the location of E and the funda-
mental solution
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and m is the dimension of the problem. Divide the boun-



dary I" into M, boundary elements and time ¢ into- N equal
time intervals. Eq: (5) becomes
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where front subscript denotes element index. Now, let’s
approximate ;g and T by piecewise linear functions in
time.
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where superscript denotes time index. Next, approximate
.q¥) and ,7Y) over element i, making use of interpolat-
ing function @, as follows.
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where £ is local node index, and L is the number of nodes
in an element. Substituting Egs. (8)-(11) .into Eq. (7)
yields
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If Eq. (12) is evaluated at a point Ek on the bound-

ary or inside the object, the resulting equation after the
assembly process can be written as
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where back subscript denotes global node index, M, is-
the number of boundary nodes, and M. is the number of -
additional heat flux components at corner or edge nodes.
Note that coefficient a, becomes unity if £ ¢ 1s inside the
object. For two-dimensional problems, each corner node
can have two heat flux- components; therefore, M. is
equal to the number of corners. For three-dimensional
problems, each edge node can have two heat flux compo-
nents, and each corner node can have three heat flux
components. Functions ¢ and y are obtained from the
evaluation of integrals shown in Eq. (12). The evaluation
of time integrals can -be done exactly as shown in the
Appendix, whereas the evaluation of boundary integrals
should be performed using the Gaussian quadrature.
Equation (13) is now written for M, boundary node

points yielding M, equations, which may be expressed as
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where 4 is diagonal matrix of coefficients a; T is the
vector of temperatures on the boundary; 4 is the vector
of boundary heat flux components that are to be deter-
mined;, g_is the vector of specified boundary heat flux
components, and P, R, and S are coefficient matrices
consisted of y and ¢ functions.

Let T, be boundary temperature responses when §
vanishes.
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If g is known as a function of time, 7, can be found by
a time-stepping procedure. Note that 7, = 0 only if § =
0. Subtracting Eq. (15) from (14) results in



tained from 11 temperature sensors placed at the nodes.
This problem is simplified by the fact that g = 0.
Hence, To vanishes. The time step used is 0.02, and the
calculation is performed from time 0 to 1.2,

In order to make the computatlon: of heat flux straight-
forward, heat flux is expressed; in. terms of boundary
temperatures as .

q(") = ZY("—J)(T(J) _TO(J)) (18)
j=t Fig. 2 Temperature measurements st surface AB
where ¥ = (X-(O;)yl . .

' Figure 2 shows the temperature measurements at
- surface AB. This temperature distribution is obtained
r®® = (X O)T‘ =iy () from:the boundary element solution of the same problem
with known heat flux, as: shown in Fig. 3. If these temp-
(1<l< k - 1) (19)  crature measurements are used as input data for the es-

timation of unknown heat flux, it is found that the deter-
mined heat flux is identical with the heat flux shown in

3. Results and Discussion Fig. 3. Hence, this algorithm is capable of providing an

The sample problem to be considered is illustratedin  accurate estimation of unknown heat flux.

Fig. 1. A square object, which is insulated on three sides,

is subjected to unknown heat flux on the remaining side

AB. Suppose that temperature measurements are avail-

able on that side. The unknown heat flux will be deter-

mined using the algorithm described earlier. q
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Fig. 3 Heat flux that yieids temperature measurements in Fig. 2
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The temperature measurements in Fig. 2 are error-
less measurements, which are unlikely in reality. Usually,
A ? ? f ? f f each measurement contains some statistical error. As a

result, the estimated heat flux will contain. statistical
unknown heat flux error too. Let’s assume that the error in temperature mea-
surement is normally distributed with standard deviation
o, and that errors of any two measurements are uncor-
related. The linear relation between estimated heat flux
For computational purpose, the boundary is divided  and temperature measurements in Eq. (18) implies that

into 40 elements. Since only surface AB is non-insulated,  the ratio of the variance in estimated heat flux to the var-
Only [he hea[ ﬂux Components on 11 nOdCS along A.B are lance in temperature measurements is
o be estimated from measurement data, which are ob-

o}

Fig. 1 Sample problem
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where M, is the number of heat flux.components to be de-
termined.
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Fig. 4 Maximum variance in estimated heat flux along the surface AB

It can be seen that the variance in estimated heat flux-in-
creases monotonically with time. Hence, maximum var-
iance is reached at maximum k. In other words, the var-
iance of estimated heat flux component at earlier time is
smaller than the variance of estimated heat flux compo-
nent at.later time. In addition,-it should be noted that
there is variation in maximum variance along the sur-
face, as shown in Fig. 4.

4. Conclusion

A method for estimating boundary heat flux of a
multidimensional body from boundary temperature mea-
surements is presented. This method requires the num-
erical solution to the inverse heat conduction problem,
which can be efficiently obtained with the boundary
element method. The estimated heat flux is expressed as
a linear function of boundary temperatures. Hence, sta-
tistical error in the estimate is readily determined if
errors in measurements are known. The efficiency and
simplicity of this method should make the determination
of boundary heat flux from boundary temperature meas-
urements a viable alternative to conventional methods of
determining boundary heat flux.
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Appendix

Analytical evaluation of time integrals in Eq. (12)
will now be given separately for two-dimensional and
three-dimensional problems.

Two-dimensional problem
From Eq. (6),
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where E, is exponential integral, defined as
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Three-dimensional problem
From Eq. (6),
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where erfc is complementary error function, defined as
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