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Abstract

Discrete  tomographic  reconstruction  algorithms  for

reconstructing turbulent flame-property profiles from limited
absorption data have been studied. The turbulent flame is
simulated by an off-center Gaussian profile which represents a
two dimensional field of average values of transmittance. This
study introduces a numerical technique for synthesizing strip
integration resulting in a projection matrix that discretely

characterizes the problem. The synthetic projections and a natural

pixel matrix are then constructed and the appropriate numbers for
angular and lateral sampling are determined. Two reconstruction
algorithms for underdetermined problems have been used in this
study: The algebraic reconstruction technique (ART) and the
natural pixel (NP) decomposition technique. It has been found
from this study that the discrete tomographic technique tolerates
the incomplete data and the method also allows us to model the

path integrated measurement data discretely.

1 Introduction

Reconstructing the local probability density functions (local-
PDF). of a thermodynamic property within a turbulent flame from
their measured path-integrated probability density functions (path-
PDF) has evolved only recently. Beginning in 1996, Nyden et al
{1] introduced an algorithm for reconstructing moments of local-
PDFs (called local moments) of transmittance within an
axisymmetric turbulent flame [2] from their measured and
computer simulated path-PDFs. Later, Vallikul et al [3] improved
upon the algorithm so that it can retrieve the local-PDFs of
transmittance at an arbitrary location within the turbulent flame
when the reconstructed local moments are given.

Although the algorithm has been shown satisfactory on the
basis of the quality of the reconstruction results, an underlying
assumption —that the local-PDFs have to be statistically

independent— remains questionable. On the other hand since
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the Filter Back-projection (FBP) [4] technique has been used
during reconstruction, the- algorithm becomes semi-discrete and
“excessive tomographic data are needed in order to obtain
consistent reconstruction results [5). The assumption that the
local-PDFs. have to be. statistically independent and the fact that
the method is not tolerant of incomplete tomographic data are the
two main disadvantages of the aigorithm.

This study is aimed at overcoming the latter disadvantage.
The idea is to replace tﬁe FBP technique by the Natural Pixel
(NP) technique, then study the effects on the quality of the
reconstruction. The Natural Pixel (NP) reconstruction technique
[6] has been used for incomplete tomographic data [7] and the
technique is sometimes called discrete tomography since all the
steps in the reconstruction algorithm are fully discrete. In this
study a test function is initially set up (section 2), then, a matrix
projecting the test function into discrete strips is constructed and
analyzed (section 3). The NP method is reviewed in section 4,in
which the effects of the number of pixels, projection strips and
view angle on the reconstruction results, is studied. Finally the
reconstruction result using the NP method is compared with the
FBP and with an algebraic reconstruction technique (ART) [8], the

results being shown in section'5.
2 Test Function

An off-centered Gaussian profile has been chosen as the

test function, f(x,y) for this study. The function has the form

2 2
f(x,y) - e-d(x—xo) +(y—¥)°] )

where the constant ¢ and (g, Yo) are set to be 20 and (0.4, 0.0)

respectively. A surface plot of the function is shown in Figure 1.

Figure 1 The test function

The off-centered Gaussian profile has the analytical line

integrated function at different angles of the form {8}

' T _c(r-R)?
pL(r)=\/;e =Ry )

R=\/x§+y§ cos{[ tan"| 22 ||-0

Xo

where

The line integral (2) will be used, in section 4.2, to calculate the

analytical value of projection strips.

3 Construction of the projection matrix

In discrete tomography, the problem is derived in discrete
form at the beginning of the reconstruction- process. The two-
dimensional domain is divided into pXp rectangular pixels and
the function, f(x.y), that falls into each pixel, is approximated to
have a constant value f;, (q = 1... pz), represented by a vector f.
The projection matrix, ¢ is then defined by the matrix that
transforms the vector f, into the projection vector y of length
MXN where M and N represent the M view angles and the N
number of projections at that view angle. F;.wr example, if y,, is
the element of vector y then y,, represents the value of the n[h

th
projection when viewed from the k angle, hence

of=y 3)

2
The matrix (b has MXN rows and p columns, that is,

”‘1’11.1 ¢11.z ¢Il.q ¢“_,,z
¢12.l ¢12.2 o ¢12.1] T ¢|2‘

[’2

¢ = {4)
Ons P2 ¢l’"-q d)kn.nz

¢MN q

_¢MN 1 Puna q)M/v.p2 ]

The vectors f and y are

IR A (5)
and
yv=b"m V@ e s Y] e
respectively where y(k):b‘“ Yy o Vi ykNlT
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If the y is set to be the strip integral of f, then each element of
(]).m‘ q représems a portion of the area of the o strip of the K"
view angle that passes through the pixel q. Calculation of the
value of each element of ¢ is a matter of determining the area of

a polygon {6}.

3.1 Evaluating the projection matrix: a simple example
Consider a domain consisting of 3X3 pixels and let each
pixel has an area of unity. Two strips pass the pixels at the view

angles of 0° and 90° respectively as shown in Figure 2.

Y2
7 8 9
4 5 6
Y21
1 2 3
Y11 Y12

Figure 2 An example of function decomposition uses

( 3x3 pixels and 4 projection strips ).

The matrix ¢ according to (4), can simply be written as

1 05 0 05 0 1 050
005 1 0 05 1 0 05 1 -

1 1 1L 0505050 0 0

0 0 005 05 05 1 1 1

4. Natural pixel decomposition reconstruction
Natural pixel .decomposition (NP) is a technique for
reconstructing a function from its incomplete tomographic data.

With this technique, the vector f is written as linear combinations

T
of the column space of (D :
f=0"x (8)

where the elements of x are unknown. The vector X is

izl @ Tk e T en)]”

and

x(,k)=[x“ X2 7 Xy T xuv]T

T
The vectors f and x and the matrix ¢ can be written in terms of

their elements as

Si=0uxn t Xt Xy e F Bpn Xuen

£ f¢112xn Xy ot P X+ Py 2 Xy ©)
fq f¢uqxu FP0%i2 oot Py X +"'+¢MN,q.xMN
fp =0, 0 p Xt X et Xy
Substitute f from (8) into (3) and the result becomes

=¢¢" x
:G£

I

(10)
G=¢¢"

where

|

G is the natural pixels matrix. As can be seen from (10), the
element G is a correlation between the ilh and the jth strips. And
the component y; of the projection vector y is the summation of alt
contribution of each correlation betweeﬁ the im and the jm strips,

starting from j = 1 to MN.

4.1 The effects of number of pixels
In this study we evaluate the effects of the number of pixels
from the values of the vector x in (8). Since the test function f is

known, x can be determined directly from

x=0")"f

Since the problem is over-determined, the singular value
decomposition technique is used to solve the above equation.
Evaluation of x directly from this method rather than that from the
reconstruction result, has an advantage in that the reconstruction
errors can be avoided, thanks to the computer simulated test
function f.

The solutions x are obtained for the different numbers of p2
(= 32 x 32, 64 x 64, and 128 x 128 pixels) but a fixed number of
MN (8 angles x 64 strips). Since the solutions x do not have a
physical meaning, we then interpret the solutions in terms of the

approximation functions of f. Using the solutions x, three different

approximation functions of f are shown in Figure 3
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Figure 3 Approximation function f (a) 32 x 32 pixels

(b) 64 x 64 pixels (c) 128 x 128 pixels

It is shown in Figures 3a to 3c that a similar streakline pattern
appears on all of the approximation functions. Increasing the
number of pixels does not overcome the streakline error. This is

due to the fact that the number of projection strips of the matrix

(I)T, both lateral and angular, is limited to MN (8x64 strips).

4.2 The effects of number of projections

The accuracy of the lateral strip projections is studied by
comparing the strips obtained from (3) with that from analytical
integration of (2). The calculation of projection strips from (3) is
of the

straightforward while the analytical strip projection

particular test function can be obtained by

it

1 1
its
2 2 ,
ps(r)= J-Pe (r)dr = .[ ‘/le_dr—m dr (11)
c
1 |

2

2 iy
where R:\’x§+y5 cos{| tan"'| =% }1-0

t

Figure 4 compares the strip projection functions between
those obtained from discrete projections, (3), and those from
direct integration, (11). The results are calculated for di’fferent
values of strips per view angle (32, 64 and 128 strips) but a _ﬁxed
number of pixels (64 x 64 pixels). Errors are presented as
percentage of root-mean-square error. The emor decreases,
noticeably, when the number of strips increases from 32 to 64 but
negligibly when the number of the strips increases from 64 to
128. This demonstrates that the accuracy of the projection strips

has reached its limit for the given number of pixels.
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Figure 4 Projection function : direct integrated (solid line),

4.3 The effects of number of view angles

Effects of the number of angular samplings are shown by
Figure 5. The Figure is obtained by calculating the approximation
function of f, using the solutions of x for different number of
angular viewé (4, 8, and 16 view angles) but for a fixed number of
pixels (p2 = 64 x 64) and lateral projection strips (64 strips per
angular view). It is clearly demonstrates that for the given
numbers of the pixels and the lateral projection strips, a more

accurate approximation function f is obtained when more angular

samplings are used.

5. Reconstruction Results

It has been shown from the previous section that an
appropriate dimension of the projection matrix (b affects the
accuracy of the unknown coefficient vector x . In this paper, the
projection matrix d) is constructed based on 64 x 64 pixels, 64

strips for each angular view. The number of angular sampling is
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left as unknown, which is usually the case for combustion

measurement.
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Figure5 Approximation function f : (a) 4 sampling angles

(b) 8 sampling angles (c) 16 sampling angles

Figure 6 shows the reconstruction results of the test function

from their analytical path-integrated data. Three reconstruction

techniques are used: FBP, ART and NP techniques. Picture
distance (PD) measure as we used in our previous work [3] is
again used to evaluate the resemblance of the reconstruction
results to the test function.

It is shown from Figure 6 that the ART and NP techniques
give a befter reconstruction result than FBP. The results of FBP
and ART are comparable when the higher number of angular
views are used. Figutes 7 to 9 show the surface plots of the
reconstructed functions by using FBP, ART and NP techniques
respectively. Consider particularly the NP result, it is shown in
Figuré g that the PD measure is high compared to the other
techniques when higher angular views are used and the error
smears over the entire region, which is similar to white noise.
Improving the matrix-inversions technique using an appropriate
technique, e.g. wavelets, is under way in the current series of

investigations.

07

—--O--- NPwavelet

Picture distance

1
5. 10 15
Number of angles

Figure 6 Picture distance : FBP, ART and NP.

6. Conclusions

Discrete tomographic reconstruction of an off-centered
Gaussian function from its incomplete data has been studied.
With this method, the Gaussian function is assumed to be a
discrete function at the beginning of the reconstruction process. A
projection matrix, which projects the test function into projection
strips, is constructed and its characteristics studied. It is shown
from the study that the accuracy of the reconstruction result
depends mainly on an appropriate dimension of the projection
matrix. Reconstruction results using the FBP, ART and NP
techniques have been studied and compared. It is found that
when a small number of view angles (less than 8) is used the
ART and NP techniques give more accurate reconstruction
results than the FBP. On the other hand, when a large number
of view angles is used the reconstruction results using the ART
and FBP are in good agreement with the test function. There
appears to be a white noise pattem in the reconstruction results
when using the NP technique with a large number of angular
samplings. To solve this problem, an advanced algorithm for the

solution of a large matrix is needed.
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PD : 0.607829

PD : 0.120953

: 0.007097

Figure 7 Reconstruction results using FBP technique.

with 4 .8 and 16 sampling angles respectively
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: 0.445108

1 0.104254

PD : 0.005325

Figure 8 Reconstruction results using ART technique
with 64 sampling” points (a) 4 sampling angles
(b) 8 sampling angles (c) 16 sampling angles

1 0.457832

_PD:0.133641

PD : 0.141423

Figure 9 Reconstruction results using wavelet-NP technique

with 4,8 and 16 sampling angles respectively





