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Semi-Analytical Solutions for a Bounded Circular Reservoir with
No Flow and Constant Pressur¢ Outer Boundary:
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ABSTRACT

This paper concems the development of semi-analytical (approximate) solutions for a
fractured well producing at a constant flow rate from the center of a bounded circular reservoir
that has a no flow or constant pressure outer boundary. The utility of these solutions is that they
provide explicit formulag for computing reservorr performance, as proposed to the Laplace
transform sohutions which have complicated Bessel functions and require numerical inversion.

The more rigorous (and hence, complex) Laplace transform solutions are relative easy to
compute and manipulate givch modem computing environments; however, this paper serves as

mechanism to provide those interested with accurate and computational simple methods for
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1. INTRODUCTION

Fracturing is an effective technique to increase the productivity of damaged wells, or from
wells of low flow capacity. Grmganm,etal mkv&:cedﬂ:ecmceptofmﬁmﬁaomxhcﬁvny
vertical fractwe and generated type curves to facilitate modeling and analysis using these
solutions. Atpesengmeﬁmheﬁacummuvnycmceptnsomsdaedwbemostwm:
However, ﬂxemﬁm!ecmvnyframnecmmmtesaspecmloaseandxsvahdfm’ Cop > 100.
’Ihesohnmsf«mﬁmmmuvnycasemsohnmswnhxo~o Incaseufalngx,butnot
inﬁnime, fracture eouduonvny, the same solution wiﬂi xp =0.732(1inifmm flux) can be used .

In case of infinite fracture conductivity, there is no flow resistance in the fracture itself.
'Ihe;xessmedstﬁblﬂioninaresavqirisdeﬁibedhy a radial flow equation as:

1 .0(, dpp)_2pp

1
"oa"okpa’n) 2 : @
Polrostip =0)=0 @)

The continuity between the two flow regions in-the fractur¢ model and the planc source of the
pressure and the fhux density (fluid rate per unit fracture length) may be expressed as:

p,,,(xb,t@): pD(xD,tw), ~iSxpSLtyp >0 : .(3)

éﬁ)(."o:‘w):%(xp,‘w)’ ~1Sxp <Lty >0 )

Okmandkmghavmzcmsideraﬁmm’sﬂncﬁmappvadnfmgnﬁngaﬁn:m
alongapath(frachxe)inﬂnereswvoir..TheLﬁplaoetransfmm solutions are for a fractured well
with a constant plessute outer boundary as:

;D,q.s(“ :xz)) = *—J. l: J—(XD "'Z)} Ig(‘/’-i'w) Io{ﬁ(xp - 2)}](12 ........................... ;)
andwiﬂnanoﬂowo\merbotniaxyas: |
;DM (.""'.D:xn)‘ _—," f(xo Z) J_r [J‘f('-"’) )z f(‘ub) o(z)dz] ------- 6)

1
The ?1,;,[ _Ko{\/;(xp-z)}dz texm from both equations is the solution for a fractured well in an
-1 _ :

infinite acting reservoir. The inversion of this term is given by Gingarten , et al as:
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nt 1-x 1+x 1-xp (1- xD)z 1+x, (l+xD)2
pDH(xD,OJWFg{eﬂ{ﬁl+er{2ﬁ H+ 4 E{ Y } El[ Y }

D

and the derivative is given as:

ol 2|

From BEgs. (5) and (6), the bounded dominated parts are in Laplace domain, which have to be

evaluated numerically. The approach to obtain invertable forms of the solutions will rely on
polynamial expansions of the modified Bessel functions of the first kind {7,(z) and /,(z) }, several
forms of a sohstion can be developed by extending or truncating a particular set of terms. For any
developed relation the following results should be verified:

» The approximate real space solution is accurate compared to the numerical inversion of
the Laplace transform solution.

o The derivative of the approximate real space solution is accurate compared to the
derivative function obtained from numerical inversion of the Laplace transform solution.

2. LAPLACBE TRANSFORM SOLUTIONS AND REAL SPACE APPROXIMATE SOLUTIONS

The wterbmndaxycaxliﬁonfwmstantpessmembmnﬂaxyisz

pD(xD,tw ,r,D) =0 O , )]
The Laplace domain solution for an unfractured well in an infinite acting reservoir is given by
Okan and Rimghava.n2 as:

;D,,,,,(u, ,xD)——I [ Vu(xp - z)} f:(g‘:)lo{ﬁ(xo-z)}}dz ......................... 10)
By inspection of Bq. (10), the j {Va(xp-2)}dz term is the constant rate sohition for a

fractured well in an infinite-acting homogeneous reservoir. The solution that need to be found is

the finite-acting part. Let y=—‘/(x,,—z)2, the upper and lower limits of the integral will be
rewritten as:

- - KO(J;’; ) Va(l-x,) Va(1+xp)
Pp.egs (4.7, .xD)=pD,u(u,xD)—5m—(ﬁD—r) J; Io(z)dz+jo Io(z)dz} ..... an
. [} eD

The “asoe;xﬁng” series form of the /,(z) is given in Abramowitz and Stegun3 as:
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4
I,,(z)=‘l+€-+—;2~+... a2

"Iheﬂmdandhlghermdertamsmaybenegleoﬁedaszao By using Bq. (12),ﬂ|emegrmon
temlsoflo(z)mBq (ll)mayberedwedto

Ju —xp s ('+x
J' : )o(z)dz+jfl Iy(2)dz =2u +“ J “‘/_‘J 13)
0

From Eq. (13), andusmgﬂnebmmmalsenesfmnfm (l+z)'—l 7+~ z’+ for |z|<1, the

Io(ﬁ;r,,,) term may be written as:

L e "
]o(‘/;"-o) _ 4 '
So, the simplified equation in Laplace domain is: |
| - - 1 1 2 2 wi(1 2
PD.@(“"'«D§"D) = Ppue(1%p)- Ko(*/;’.n)[l—2+;+—49-— !2‘9—--‘—“2(?2-'4-'—42-)] e ()]
The —"%[112 *:) term may be neglected as Var,, — 0. The final form of the Laplice domian
sohution is:
1. x3 . : §
quas(” Tup¥p) = Po.mr(" xD) Ko(‘/;"cb)[‘l‘z'*;*";‘&f‘] --(16)

Tlﬁseqﬁaﬁmcmbeinvaiédtdmemddmainbyusingﬂleinvasimtable.Themesulris:

pp.¢(fw,r.b,xu)=z?n,u((w,x )“"Ex[ " ] -—‘-‘-B-+xlz,~f,i,‘]‘eip{-4—!”—)....;....(l7)

, ) Sy tp
The “well testing~ derivative form of Eq. (17) is:

' Pb.qé(’w»"wvxo)=Pf),u(‘w,xo)'"l- :—':P-] B—u}, r.’,,][——-—':l’—) -—':2] .......... (18)

2 7 4 81, 3217 4ty
o No-Flow Outer Boundary Case
The outer boundary condition for a no-flow boundary case is:
(’b_dpg) o a9
aro 'h-r.p N

The Laplace domain solution is given by Okan and Ranghavan as:

_ - K(ﬁr,,,) Ja(1-x,) Ja(1+3,)
(u,r ,Xp)=Pp; (u,x + ! Iy(2)dz + Iy(2)dz |........... (20)

Ppap\UsTep ) Pp,it o) mj; 0 J'o 0
K(z)
Ii(2)
modified Bessel functions as:

Kz) _ Kyla)-Kof2)
11(2) Io(z)‘lz(z)

The “ascending” form of 7,(z) can be written as:

term may be inverted into simple known functions by using the Wronskian relation for

1)




424

72 7
LG)=2+ 42 4 22
2) 2 16 386 2

'Iheﬂmdandhlgbet«darwmsoanbeneglectedasz—-m Byuanglhefactﬂmtﬂ:edmdand
higher order terms in (1+z) " =1-z+22~2+... for |2} <1 can be neglected as z -0, the

reciprocal of /,(z) miy be written as:

b —
The 1,,(:) I,(2) term may be written in terms of /,(z) as

Iy(z)~L(z)= ;11(2) - i (24)
Using these relations, Eq. (21) may be reduced to yield:

A (s CADRE) B—— 5
So,meﬁnalfmnmmeupmedqminmybewﬁnaaasz

Poms 40:50) = Poselber0) o 1= 0)- Kl 2 22 6] 29
By neglecting seme terms as a0 , Bq. (26) may be reduced

Poupiripxo) = ;,,,u<u,x,,)+[5+ Lo a@)-&}]{mz)— Kol o @

Using standard tables of Laplace transforms, we can invert Eq. (27) term-by-term to yield:
1{1 x i ~r2
Poap (tlp,’w'xD) Pn.mr(‘w xn)"‘El(r'DJ —‘[34" 2 +2p - r’f }e“{_-v_] ----- (28)

41["'D
andﬂ:edexivaﬁvefmnis:
, : 1 (1 3 ) 2 ~rip
b s XD ) = Powc\bim s Xp )+ ——| =+ 22— {4 —le reeienevennens 29
Pum(w D D) Pb.mr(w D) [4tw(6 2 "4 2 Tan (29)
e Construction of Type Curves

In this paper, the exact real domain from Laplace domain is determined by using Gaver-Stehfest
algorithm because most of the solutions developed in the Laplace domain are too complicated for
inversion using techniques of oomplex analysis. The Gaver-Stehfest algorithm is given as:

JAOR azn:v,T(ai) : : ereerrnee(30)

i=]

where:

a=—-=... . .- correas an

and the Stehfest ooeﬁiments are given by:
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: 2) n/2 .
v = (-1 Z Kak) A=L12,..n G2
i+l)(——k) ‘

VM(k =i - & )2k =i}
which is the cosrect form'. The Gaver-Stehfest algorithm usually gi\.ies. acceptable results for a
widetangeofproblemsusing4<n<20,wherenisalwayseven.ht-his‘.wak.n-'élisused
Low values of n should be used for complicated problems.
3. VERIFICATION |

Figures 1 and 2 are log-log plots of an analytical, mil'netical.iévexsim of Bq. (10), and
approximate dimensionless pressure Bq. (17) and pressure derivative solutions Bq. (18) for the
unfonnﬂux mdmﬁmmecon(hwuvny vertical fracture cases with a constant pressure outer
boundary reservoir, respectively. The plot show good agreement between the analytical, and
approximate values of dimmsmnless pressure. There is some disagreement for dimensionless
pr%smedenvauvewlnchmaybed:erestdtofacﬁ'asuodecreasemtﬁtmsnmlessp:esm
derivative values as the dimensionless pressure function becomes constant.

'Ihecmnpanscnbetweeans (20)and(28), amid:enrdenvahvesxspesenﬁedml’igues
3 and4foram1fmnﬂuxandanmﬁmteomdxcﬂvuyvaucalfncm respectively. There is an
good agreement between the analytical and appmximate dimensionless pressure and pressure
derivative.

From observing, the behavior of the derivative approximation for both cases is in good
agreement, except in the region where the reservoir approach steady-state flow omﬂinons Other
solutions with mere complexexpansimdonotgivebenerpé:fonnanceﬂmndw cases presented in
this paper. Bisalsonoﬁoeablematmeimerbmmdaryhasﬁlﬂegﬁectonthepse\ﬂo-steady state
region. |
4. SUMMARY AND CONCLUSIONS

The approximate solutions are developed for the Laplace transform and real space
solutions for a fractured well with a constant flow rate centered in a bounded circular reservoir
with a no flow or constant pressure outer boundary.

Bach of these solutions has been shown to be accurate compared to its analytical
solutions, the numerical inversion of the Laplace transform solution. These relations may be used
to develop theoretical results and analysis relations.
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6. NOMENCLATURE

Pp

Pmw
Pb

formation volume factor, Reservoir Barrel per Stock Tank Barrel

e -1
total system compressibility, psi
0.8936C N .
7~ dimensionless fracture storage coefficient
gchly
formation permeability, md
__kh
141.2¢Bu
dimensionless formation flow rate

Ap, dimensionless pressure function for the constant flow rate case

t %‘;!‘l, logarithmic derivative of dimensionless pressure function for the
D .

constant flow rate case
Laplace transform of dimensionless pressure
surface flow rate, Stock Tank Barrel per day

9Bu dimensionless flow rate
141.2kk(p, - p,,; )

dimensionless formation flow rate

r dimensionless radius
r

L dimensionless drainage radius of the reservoir

r

extemal radius
wellbore radius
skin factor
time, hrs
0.0002637 p kth , dimensionless time based on fracture half-length
HC Ly ,
Laplace space variable, dimensionless
X dimensionless distance in x direction
x
S
Fracture half-length

variable
porosity, fraction
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H = viscosity, op
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