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Abstract

The paper presents a numerical simulation of a steady
turbulent airflow in a circular duct containing an orifice
plate. A Finite Volume approach with a non-uniforia and
staggered grid system is employed in the present
simulation. To account for the turbulence nature of the
flow, the standard k-¢ turbulence model is incorporated in
the time-averaged governing equations. Effects of
numerical diffusion on the calculated results are also
investigated by comparing between a second-order-
differencing scheme for the convection transport and the
first-order hybrid scheme. The calculated solutions are in
close agreement with 3D LDA measurements. The
computations of the flow reveal that the use of a second-
order scheme leads to more accurate results than that of a
first-order scheme.

1. Introduction
The orifice meter is a device commonly used for

measuring fluid flow in industrial processes such as

metering flow in the natural gas industry. Although more
accurate metering methods are available, the orifice plate
continues to be preferred. The popularity of the orifice
meter can be attributed primarily to its simplicity,
relatively low cost and little maintenance requirements in
comparison with other fluid meters. The orifice plate
becomes the essential part of a fluid flow meter when
installed in a pipe such that the fluid stream must
negotiate the constriction.

By far the most common orifice plate mstallatlon is
that of the concentric round orifice plate. In this type of
arrangement the orifice is round and the plate is mounted
between pipe flanges. The plate is positioned
perpendicular to a fully developed pipe flow while at the
same time the circular orifice is concentric with respect to
the (circular) pipe interior. Other types of orifice plate
exist, such as square orifices, series and non-concentric.
Also, the inner edge of the orifice is machined in one of
several different ways. Some orifice plates are square
edged while others are rounded and beveled. This study is
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concerned with the concentric, round, beveled orifice
plate.

Most of the work thus far on orifice meters has
focused almost entirely on the determination of discharge
woefficients. There have been a handful of attempts to
study in detail the flow field in the vicinity of the orifice
plate. It is believed that knowledge concerning details of
the orifice flow field will lead the way to improvements in
metering accuracy. These improvements could come via
improved determination and prediction. of discharge
coefficients.

This paper deals with the simulation of turbulent flow
through an orifice plate with a view to increasing the

knowledge of orifice meter flow. The mathematical model

including the k-¢ turbulence model, ‘numerical solution
and other computational details is described. Comparisons
of the calculated gas axial velocity with 3D LDV
measured data [4] are made to evaluate the turbulence
models and the numerical schemes used.

2. Mathematical Modelling
2.1 Governing Equations and Closures

For constant density, isothermal turbulent flows, the
time-averaged incompressible Navier-Stokes equations in
the Cartesian tensor notation can be written in the
following form:
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The mean viscous stress tensor is approximated as:
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where g is laminar viscosity. Due to the nonlinearity of
equation (2), the averaging process employed- introduces

" the unknown correlation the time-averaged Reynolds

stress_ tensor, T; (= -pu;u'j-) that are obtained from



turbulence models [1, 2, 3, 10]. In the present study, the
standard k-e turbulence model [!, 10} is adopted and the
Reynolds stress is linearly related to the mean rate of
strain by a scalar eddy viscosity. The standard version
relates the turbulent eddy viscosity to the turbulence
Kinetic energy k& and the dissipation rate & through
Boussinesq’s approximation [8] as:
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where g, is the turbulent eddy viscosity. In the k-€ model
the turbulent viscosity is related to & and € by
2
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The two turbulence quantities in equation (5), k and €, are
obtained from the following transport equations which are
solved simultaneously with governing equations (1) and

in which G represents the rate of generation of turbulent
kinetic energy while pe is its destruction rate. G is given

by:
6
G=u) au Gu
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The boundary values for the turbulent quantities near the
wall are. specified with the wall function method [6]. The
empirical constants C,, C,, Cu, o, and o, in the
turbulent transport equations are assumed to have the
values 0f 0.09, 1.44, 1.92, 1.0 and 1.3 [8, 10] respectively.
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2.2 Common Form for the Equations

All the governing partial differential equations can be
re-organised and expressed in a standard form that
includes the convection, diffusion, and source terms {35, 9]
for 2-D axisymmetric flows as follows: '
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where ¢ may stand for any variable including the
5 5 3 velocity components, I‘bxand [, are the exchange
K, Oc¢ € . .
5}(*_(/7"/5): 5;"{;‘2 5;“)* Z(ngG ~Cpap%) (7} coefficients for ¢, and Sy is the source term.
J ST Detailed expressions of I', , ', and S, for different ¢'s
are summarised in Table 1 below.
Nomenclature
Ci, Ce; constants in the d1551pat|on rate equation Greek Symbols
C convection term i Kronecker delta tensor
C, constant in the k-g turbulence model g dissipation
D diffusion term; dimension ¢ generalised dependent variable
D pipe or duct diameter Ty exchange coefficient
d orifice diameter B ratio of pipe to orifice diameter (d/D)
G stress generation 4, 4,  dynamic viscosity, eddy-viscosity
k turbulence kinetic energy effective viscosity, (= 4, + 1)
/ turbulence characteristic length scale He i AN
P mean pressure p density
P inlet wall pressure Gy Schmidt or Prandtl numbers for the scalar ¢
Do outlet wall pressure T vReynolds stress tensor
r radial co-ordinate; radius .
R pipe radius Subscrlpt;f ]
Re;,  Reynolds number based on pipe diameter e etiective
S general source term; swirl number L . turbulence gi
t; viscous stress tensor L) Cartesian indices
y fluctuating ve]oc\.ltles in direction x; Superscripts and Overbars:
puu; Reynolds stresses a
. . L ’ ti tity in time-averagin
u time-averaged velocity in x-direction l;ctua :;it?tuan ity ind raging
v time-averaged velocity in r-direction mean q Y
x axial co-ordinate
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Table 1 Summary of the governing equations.

Conservation of ¢ Tygx Tor S¢
Mass 1 0 0 0
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2.3 Solution Procedure

In the present computation, the time-averaged
Navier-Stokes equations, the TKE equation, and the TKE
dissipation rate equation are solved numerically by a
control-volume finite-difference method {5,-9] together
with the the k- model, equation (4). All equations are in a
generalised form-of equation (8). The SIMPLE algorithm
is utilised for pressure-velocity de-coupling and iteration
5, 8}. The hybrid [9] and the second order upwind (SOU)
[7] schemes were used for discretising convection and
diffusion transports on a. staggered grid cell. The
underrelaxation iterative TDMA line-by-line sweeping
technique is used for solving the resultant finite-
difference equations. The computation was. carried out
using a PC (Pentium IIl - 450 MHz) computer. About
5,000 iterations were needed to achieve satisfactory
convergence for each calculation case, which requires
about 15 minutes of computer time.

3. Flow through an Orifice of Nail [4]

A flow in pipe with a circular orifice of Nail [4] was
employed in the present simulation. A schematic
configuration of the duct orifice is shown in Fig. 1 below.
The pipe with a length of 9D has a diameter of 25.4 mm
and the 3.2-mm thick orifice diameter is 12.7 mm. Profile
measurements of centerline axial velocities, wall-static
pressure, Reynolds stresses, and wall shear stresses were
measured by using Laser Doppler anemometer (LDA).
The flow had the Reynolds number (Re) of 1.84 x 10* and
rate of mass flow of 1.356 x 10" kg/s with temperature at
300K (see Table 2 below for specifications).

Fig. 1 Geometry of pipe with the orifice.
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Table 2 Data for flow'through an orifice plate [4].

Magnitude

Parameter

Test section characteristics
Pipe diameter (D), m 0.0254
Orifice diameter (d), m 0.0127
pipe length (L), m 1.8

Inlet fluid properties (air)
Mean axial velocity, m/s 5.6
Temperature, K 300
Reynolds number 1.84x10°

4. Results and Discussion

The comparisons between the predicted results by the
k-e turbulence model with different numerical schemes
and the measured data of the flow are presented in Figs. 2
through 7. The predicted gas pressure and centerline axial
velocities are compared with the measurements, where
solid or dash curves are represented for the calculated
results while open circles for the measured data.

The computational results are based on a 70x30 non-
uniform grid with refinemerit in the vicinity of the orifice:
Grid independence of the numerical results was verified
with a 90x50 finer grid. [t is found that the differences for
both the base grid and the finer grid in local flow
properties are marginal. This suggests that grid
independent solutions can be obtained with a 70x30 grid,
which is used throughout the computations. In order to
reduce uncertainties in the inlet profiles of the mean flow
field, the inlet boundary conditions were specified at x/D
=-2.0 for which measured data was available, apart from
the radial velocity v which is set to zero.

The distributions of centerline axial velocity
predicted with the hybrid and the SOU schemes are
compared with the measured data in Fig. 2. A closer
examination reveals that predictions with both the



schemes are in generally good agreement with the
measurements. However, for prediction with the hybrid
scheme, under-predicted results are :seen in the orifice
region in comparison with experimental data. The use of
the SOV leads to substantial improvement for this flow.
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Fig. 2 Effects of numerical schemes on centerline axial velocity
profiles with measurements.

Figure 3 compares the profiles of static pressure along
the wall using the hybrid and the SOU schemes with the
measurements. It is found that there is a high-pressure
drop across the orifice. Predictions with both numerical
schemes show favourable agreement in upstream region
of the orifice. -However, immediately after the orifice
plate, the calculated wall pressure rises faster than the
experiment shows.! At downstream regions from the
orifice, the SOU results mimic experimental data very
well while the hybrid scheme ones are over-predicted.
Again, the -use of the SOU results in significant
improvement for this flow

O measured
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Fig. 3 Effects of numerical schemes on wall-static pressure
profiles with measurements.

Streamlines predicted with the hybrid and SQU
schemés are shown in Fig. 4 and Fig.' 5 respectively.- Two
recir\culation zones are found; one is at the corner
upstream of the orifice and the other, a large recirculation
zone, a downstream region one. The size of the
recirculation zone calculated by the hybrid is slightly
larger than that by the SOU. The center of recirculation
predicted by the SOU is at about x/D = | and /R = 0.7
while at about x/D = 0.85 and /R = 0.7 is seen for the
hybrid. The reattachment length, an important measure of
the quality of numerical fesults, is well predicted (X, exp =
225D, Xrcac = 2.23D for SOU, and’ X,y = 2.1D for
hybrid). : '

Velocity vectors predicted by the hybrid and SOU
schemes are depicted in Figs. 6 and 7 respectively. High
velocities are observed in the core region in a range of
x/D = 0 to 3 downstream of the orifice.

-2 -1 0 1 2

Fig. 5 Streamlines predicted by the SOU scheme
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Fig. 7 Velocity vectors predicted by the SOU scheme

5. Concluding Remarks
Simulations of turbulent flow through a circular

orifice plate have been carried out by utilizing the k-g

model and two different numerical schemes. The

predicted results of mean flow properties were compared
with measurements. The conclusions from the
investigation can be drawn as follows: '

1. The predicted centerline axial velocity and wall-static
pressure profiles by the hybrid and SOU schemes are
in generally Tood agreement with measurements.

2. The SOU shows a significant improvement over the
hybrid scheme and both schemes give slightly over-
predicted results in the core region and slightly under-
predicted near the walls in comparison with
‘measurements.
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