MC-131

- Coa y . x4
mademdnmuaistheiamnisieismnauvalsznalng assd 15

Optimization of Higher-Order Systems and Extensions of Minimum
Principle

Tawiwat Veeraklaew

Depa,rtment of Mechanical Engineering, Chulachomklao Royal Military Academy

Maung, Nakhon-Nayok, 26001
Tel (037) 393010-4 ext 62305, Fax: (037) 393487, E-mail: tawiwat@hotmail.com

Abstract

In recent years, using tools of linear and nonlinear
'systems theory, it has been shown that a large num-
ber of dynamic systems can be written in canoni-
cal forms. These canonical forms are alternatives to
state-space forms and can be represented by higher-
order differential equations. For planning and con-

trol purposes, these canonical forms provide a num- -

ber of advantages when compared to their corre-

sponding first-order forms. In this paper, we address

the question of optimization of dynamic systems de-
scribed by higher-order differential equations. The
minimum principle for higher-order systems is de-
rived directly from their higher-order form and the
results are confirmed by classical theory using first-
order form.

In this paper, optimality conditions for higher-
order systems are derived using two approaches:
(i) Hamilton-Jacobi theory, thereby, extending Pon-
tryagin’s principle; (ii) variational calculus of higher-
order augmented cost functional. It is shown that
the two approaches lead to the same results. Fur-
ther, the results of these two approaches are also
verified by variational calculus of their equivalent
first-order forms. The result applicable to higher-
order systems is illustrated by an example.

'l  Imtroduction

—Lc2; It is customary to express dynamic systems
in state-space form, i.e., a system of first-order dif-
ferential equations. However, for a large class of me-
chanical systems, the most natural representation of

the system is a set of second-order differential equa-

tions which arise from the application of Newton’s
laws.” Needless to say, these second-order differen:
tial equations can be converted to a set of first-order
differential equations but this process is accompa-
nied by inversion of the inertia matrix that makes

the first-order form unreasonably complicated ([21],
[5]). From a different perspective, using the, theory
of linear and nonlinear systems, see e.g. [13], tools
of differential geometry provide alternate represen-
tations of systems in canonical forms which allow
the system to be rewritten as higher-order differen-
tial equations in the canonical variables. Dynamic
systems that have this feature include controllable
linear systems [1], feedback linearizable systems [13],
chained form systems [16], and differentially flat sys-
tems [10].

This paper addresses the underlying theory'- for
optimal trajectory generation for this broad class’
of systems which have a higher-order representation
in their original coordinates or in the transformed
coordinates. Currently, methods which exploit the
structure of the higher-order differential equations
to efficiently compute the optimal solution are still
in their infancy. In a recent study, a direct method
was used for a class of higher-order systems to com-
pute the optimal solution [17]. In some recent works,
Agrawal and coworkers have exploited the structure
of the higher-order equations to compute the opti-
mal solution using-indirect methods. These stud-
les assumed no inequality constraints and the state-
space equations were explicitly embedded *nto the
cost functional, thereby, reducing a constrained opti-
mization problem to an unconstrained optimization
problem. The results from higher-order variational
calculus were used to find the'necessary conditions
for optimality [12]. This approach was demonstrated
for linear time-invariant systems {1], classes of time-
varying systems [2], feedback linearizable systems
(3], and fully actuated robot systems [4]. A recent
study uses the explicit structure of globally feedback
linearizable systems to derive some important results
applicable to optimal solution of Mayer’s problem in
the presence of inequality constraints [20]. At this
time, the authors are unaware of a unifying theory
that would extend the minimum principle [18] to sys-
tems in higher-order form, without converting them
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to first-order form. Equivalence between the results
of the minimum principle and calculus of variations
with the first-order form have been demonstrated in
the literature ({7}, [6], [19], {15], [9]).

The purpose of this paper is to extend the clas-
sical results of the minimum principle, which apply
only to systems described in first-order forms, to sys-
tems in higher-order forms. For completeness, these

results are derived using Hamilton-Jacobi theory as

well as calculus of variations applicable to function-
als with high derivatives. Further, these results are
verified using the classical results of minimum prin-
ciple by rewriting the higher-order system in a first-
order form. The results obtained by these alterna-
tive approaches are then compared to gain a better
insight into their equivalence.

The.statement of the problem is to find the opti-
mal trajectory for a dynamic system described by
where z € R and u € R™ and z(*) represents the
ith derivative of . The trajectory must minimize
the cost

J = 0@(ts), 2D (ts), ., PV (t5), t5)

+ / L(a(r), & (7), .. 2D (r), u(r), 7)dr
@)

and satisfy the following constraints: (i) u(¢) €
Alt, z(t),z (1), ..., 2= (¢)); (i) Initial conditions
of the trajectories z(t), z(V(t),...,
ified while the terminal conditions are free.

Some special cases of this problem are: (i) Here,
the set u € A[t, z(t), z( (t),...,zP~(t)] represents
general equality and inequality constraints on the
actuator inputs. A special case of this constraint is
when Aft, z(t), 21 (¢), ..., 2~ (¢)] is independent of
states and time; (ii) The cost functional (2) includes
some important problems such as minimum time,
minimum fuel, maximum terminal states as special
cases; (iii) If p = 1, Eq. (1) is the familiar state space
description of a system. Optimization of this class
has been dealt with extensively in the literature.

The purpose of this paper is to extend the theory

of dynamic optimization to the case p > 1. In this

paper, the optimization theory will be derived using
two approaches: (i) Hamilton-Jacobi theory to ar-
rive at the extended form of Pontryagin’s principle
that applies to higher-order systems; (i) variational
calculus after the inequality constraints of the set
Alt, z(t), 2V (¢), ..., 2P~V (t)] have been transformed
to equality constraints. It will be demonstrated that
the two approaches lead to the same results. Also,

2P~ (t) are spec-.

these results are consistent with those obtained by
the use of classical minimum principle applied to
first-order form. The organization of this paper is
as follows: Section 2 describes the Hamilton-Jacobi
approach to derive the optimality equations while
Section 3 addresses the same problem using varia-
tional theory when the system is in the higher-order
form or is expressed in the first-order form. The re-
sults of this theory are illustrated with an example
of a nonliner system in Section 4.

2 I{annﬂtohrJacobiTFheory

In this section, the derivation of the extended
form of Pontryagin’s principle is performed in
two steps. First, it is considered that the con-
straint set is independent of time and states, i.e.,
Alt,z(t), 0 (@),.., 2~ D(#)}] = U. The optimal-
ity conditions are derived for this case using the
pattern of proof given in [14]. Second, the con-
straint set is considered to be time and -state de-
pendent, i.e., Alt, z(t), 2 (2),...,2®P~V(t)]. The op-
timality conditions are extended for this case. In
order to abbreviate notations, we define x(¢)7 =
()T 2 ()T ... -V (H)TT.

2.1 Constraint Set U

We imbed this problem in a larger problem class by
defining a return function

J(x(t), ¢, u(r)) = D(x(tr), ts)
/ L{x(),u(7),7)dr (3)

Here, x(¢) is an admissiblc start point at ¢ and u(7)
is an admissible input trajectory, i.e., u(r) € U and
is defined over ¢t < 7 < ty. For th1s start point
(t,x(t)), we define the minimum cost

J*(x(¢),t) = mm {<I> x(ts),tr) +

/t fL(X(T),U(T);T)dT} (4)

By subdividing the interval (¢,¢7) into t < 7 < t+A¢
and t+At < 7 < iy, from the principle of optimality,
we can rewrite Eq. {4) as

t+A¢
%mnu{/ Ldr+J* (x(t+At), t+At)}
u(T)€E
(5)

On expanding Eq. (5) in Taylor’s series about
(x(t),t), we obtain

T (x(8), 1) =

T+ At
i Ld JH(x(t),t
min [ Ldre (.

J*(x(t),t) =



MC-133

aJ* oJ* ’ )
+ 2 k(. )88+ [F—(x(8), )] k(1) At
+hot} (6)

Recalling x(¢)T = (2(t)T =M @)T ...
and for small A¢, - :
J*(x(t),t) = uI(Itl)lélu{J* (x‘(t), t)
+[L(x(t), ult),t) + J(x(2),t) +
2T x(t), z () + ...
I3 (x(8), )2 (1) +

T

a0 (x(2), 8) ] (x(2), u(2), 1) At + o(A1))7)

On neglecting higher-order terms of At and sepa-

rating terms dependent on u(t), we can rewrite the

above equation as -
0= Jr(x(t),t) + 2T (x(t), )z (¢) + ...
+ 5o (x(2), 1)z (1)
+ ugl)igu{L(X(t), u(t), )
+ T30 (x(t), 0 F(x(8), u(t), )}
8)

One can now define a Hamiltonian H

’H(x(t),u(t), ;(p—l)vt) = L(x(t),u(t),t)

+ T (X(@), DS (x(8), u(t),t)  (9)

and

H(x(t), ™ (x(t), J;(p«n;t); Jow-n,t) =
ugl)igu H(x(t), u(t), J3m-1»t) (10)

Here, the minimizing control is said to depend on
x(t), Jip-n (%(t),t), and ¢. From Eqs. (8) and (10),
the extended form of Hamilton-Jacobi equation is

Jr(x(@®),t) + T (x(2), )z (8) + ...
+ Jy-a (x(2), 1)z (1)
+H(x(t)! U*(x(t)v J;(p~1) 3 t)v J;(p—l) ’ t)
=0, (11)

where J satisfies the boundary condition
T*(x(ts), 1) = B(x(ty), ty). (12)

In summary, (1)
the optimal control u*(x(t), J%(,-,), t) minimizes the

Hamiltonian H defined in Eq. (10), and (ii) the op-
timal return function satisfies the partial differential

equation (11). If p = 1, these results simplify to the’

the classical Hamilton-Jacobi equations. Eq. (10) is
an equivalent statement made by Pontryagin [18].

=D ()77

2.1.1 Extended Pontryagin’s Principle

The extended Pontryagin’s principle for the case of
p >:1 can be derived from Hamilton-Jacobi Eq. (11)
using the pattern siggested by Kirk [14]. If (x*(¢),t)
is a point on the optimal trajectory, Hamilton-Jacobi
equation can also be written as

— . * % ‘T s % *(1) ¢
0 ul(lg)lgu{Jt (<" (2),8) + Jz~ (x"(8), £)=" ()

ot LT (7 (), )2 PV (8) + ,
H(X*(t)!u(t)v ;(p—l)’t)}: (13)

since  JF(x*(t),t),  JET(x*(t),t)z*M(@), ..,
T8 o (x*(t),t)x*®P=1)(¢) are independent of u(t). In
words, for a (x*(t),t), the control »*(¢) minimizes
the right hand side.of Eq. (13) and the minimum is
zero. Hence, if we define a function

v(x(t),u” (), 1) = Jy (x(t), 1) + -
T (x(8), )2V @) ...
+ I3 (x(8), PV (2) +

H(x(t)>U*(t)7J;(p~l)vt)v (14)

in the neighborhood of x*(¢), i.e., x(¢) = x*(¢) +
dx(t), this function has a local mimimum at x*(¢). If
x(t) is not constrained by any boundaries, this local
minimum property. can be written mathematically
as %(X* (t),u*(t),t) = 0. Assuming that the mixed
partial derivatives are continuous, the order of the
derivatives in a mixed partial can be interchanged.
With this property, ¢ (x*(¢),w*(t),t) = 0 simplifies
to the following component equations:

J;(k)t -+ J;(k)zz(l) + ...+ J;(k)x(k_l).m(k)
Ty F oo T gy P
+J;(k)$(p—1>x(p) + Ly + f;‘”m T

=0, k=0,.,p—1, (15)

evaluated at x*(¢),r u*(¢), t. Here, a term such as
ey zo-n denotes a (n X n) matrix with rs element

J:(k)z(pﬂ). Using the definition of total time deriv-

ative of function J7,, the above equation sfmpliﬁes
to

d‘]::(k) * T *
—aq T e+ Lew + oo Sy =0,
k=0, .,p—1. (16)

On defining ¥i(t) = J7 o) (x*(t),t), Eq. (16) can
be written as

Viin () + W(8) + Py (x*(8), 07 (£),1) = 0,
k=0,..p—1 ' (17)
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Note that 3y, are defined for values 1 through p. In

summary, each (x*(t),t) on the optimal path satis-

fies Eq. (17). The components of this equation are
DD (8) + Yp-1(8) + Howo-n (x7(2),
221 (6) + Yp-2(t) + Hyon (<" (0),u

u*(t),t) = 0
(6),6)=0

D) + Y1(t) + Hom (X7 (1), 0" (t),t) =0
M + Mo (1), (0),6) =

Using this equations, it is possible' to eliminate
Yp-1(t) through 1, (¢). Then, the resulting differ-
ential equation is )

Ho~H + .4 (—1)P” 171“;;}2)—(—1)%,(,” (19)

which must hold at each point (x*(t),¢) of the opti-
mal solution.

The solution of this differential equation requires
boundary conditions ¥, (ts),..., (p—l)(tf)
Eq. (12) and from the definition,

Ye(x*(8f),t5) = Qo0 (X" (), ts), k=1,...,p
(20)
From Eqs. (18), it can be shown that
Ypoi = (—1)FpF) + (1P
HEDRHETD + o (D e,
k=1,.,p—1 (21)

Given ¢p_i(ty) from Eq. (20) and the expression of
Hamiltonian, Eq. (21) can be used to compute the
boundary values zb,(_,k) (tf). '

In summary, for a dynamic system described
by differential Eqgs. (1) with boundary conditions
z(0), z1(0),...,2P=1(0), the optimal trajectories
that minimize the cost functional (2) with w(¢) €
U satisfy the following conditions: (i) define a
Hamiltonian H(x(t),u(t),t) = L(x(t),u(t),t) +
YT () f(x(t), u(t),t), (i) find the minimum of the
Hamiltonian H(x(t), u*(t),t) within the set u(t) €
U, (iii) find ¥, (¢) that satisfy the dlfferentlal Eq. (19)
along with boundary conditions of 1/;
puted from Eq. (21). When p = 1, these results
simplify to those of classical minimum principle [9].

2.2 Constraint Set A(¢,x)

In this section, the constraint set for u(t) is both
time and state dependent, i.e., u(t) € A(t,x). In the
derivation of Hamilton-Jacobi equations, the steps
are same as of Section 2.1 with Eq. (10) replaced in

(18)

Using -

(tf) com- |

the following way:

H(X(t), U* (X(t), J;(P—l); t)) J;(P—U? t) =

H(x(), u(t), Jo-1,1)  (22)

min
u(t)€A(t,x)

‘In the derivation of the extended Pontryagin’s prin-

ciple, the steps remain essentially the same. x*(¢)
now minimzes v(x(¢),u*(¢),¢) subject to the con-
straint set u(t) € A(¢, x). If the constraints are writ-
ten mathematically as '

Cilt,x,u) <0, j=1,..,7 (23)
x*(t) minimizes v'{x(¢), u*(t),t), where

o (x(t), u* (8), £) = v(x(t), u* (¢), ¢)

+iﬂj(0j(t,x,u*) +€)- (24).

j=1
This local minimum property can be written math-
ematically as 2% (x*(t),u*(t),t) = 0. Using a line
of arguments similar to Section 2. 1 and defining a

modified Hamiltonian H' = H + E 1 Cy (8, %, u*),

one can shown that

YL () + i (8) + Hew (x
k=0,.,p—1

*(t)7U*(t)7 = 0:
- (25)

and p& = u;C;(t,x*,u*) =0, j = 1,..,7. This
second condition says that if the jth constraint is ac-
tive, u; > 0, otherwise u; = 0. The costate Egs. (19)
now get modified to

D+ (PG = (1), 26)
which must hold at -each point (x*(t),t) of the op-
timal solution. The solution of ¥,_x gets modified
to ‘

o
Yk = (1M + (~)MHCTY
+(__1)k IH'(k_Q) 4+ (_I)le(p_k)'

z{p—2)
E=1,..

P 1 (27)

In summary, the optimal trajectories for a higher-
order system with constraints u(t) € A(¢, x) satisfies
Egs. (1), (22), (26) along with the condition y; > 0
if jth constraint is active, otherwise p; = 0.

3 Variational Theory

First, some general results from higher-order varia-
tional theory will be stated. Almost all books on
variational calculus consider functionals dependent
on at most the first derivatives ([6}, [7], [8], [9]).
These results will then be specialized to the prob-
lem defined in Section 1.
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3.1 Key Results

For a
functional J = @ (2(ts), M (t5), ..., 2PV (ts), t5) +
ftf F(z(t), 2D ), ..., 2P~ 1 (t), zP(t), t)dt with open
end states and end time, it can be shown from the
_principles of variational calculus ({12}, [11]),

o= / hT(Fy — F(<1)+ A+ (- 1)pF(<p>]

[h (F (1) — z(z) + ..t ( )p_ng(-fp) 1)) to

2
HROT By = Fyy + - (~)P2EE )
+...+ [h(p_I)TFz(p)]to
H[F = aWT{Fa) + ..+ (1P EET Y
~ 2T (Fpy + ...+ (~1)P2FESD)
— & PTF, )6t + U6t
H[RTY, + .+ RPDT W ] (28)
where h@ = 62 is the variation of ith derivative of
z and 6t is the variation of time. The necessary con-
ditions for optimization follow by making éJ = 0.
This provides a set of differential equations to be
satisfied by the problem and appropriate boundary

conditions. From Eq. (28), it is clear that the gov-
erning differential equation is

Fam B8 4+ (CIPED), =0

In general, this differential equation is a 2pth order
differential equation. This equation is the extended
Fuler-Lagrange equation and for p = 1 reduces to
‘the familiar form. :

3.1.1 First Integrals

The differential equation (29) admits a number of
first integrals depending on the structure of the in-
tegrand F.

e If F does not explicitly contain z, i.e., Fy =0,
Eq. (29) becomes
d _
G 1Fe = Efy 4ot (C1PTIEESI = 0 (30)

Hence, the optimal solution admxts n first inte-
grals Fyoy — FL) + ...+ ()P 1RO = k.
With a similar reasoning, if F' does not explic-
itly contain an element of z, say z;, correspond-

ingly, there is a single first integral.

o If F does not explicitly depend on z and z(1),
one can write Eq. (29) as

Fpoy~F Q4.4+ (-1)P2FP D = 0 (31)

de? [

(20)

Hence, the optimal solution adrmits the integral
Fow — F8 4 o+ (~0P2E2TD = K. This
argument can be extended to obtain other first
integrals depending on the elements of x and
their higher derivatives in the integral.

o If F does not explicitly contain ¢,

F—aOT{Fy + ..+ (1)~ 1Py
— a®T(Fo + ... + (~1)P2EE}
= 2PTE G = K (32)

This property can be verified by time deriva-
tion of the left-hand and the right-hand sides.
For open end time problems, where ¥ does not
explicitly depend on ¢, ie, ¥, = 0, the con-
stant K = 0. For p = 1, if F is indepen-
dent of time, we arrive at the familiar result
F—zWTE o) = K.

3.2 Higher-Order Systems

In order to address the dynamic optimization prob-
lem at hand, which consists of minimizing Eq. (2)
subject to Egs. (1) and (23), one can define F' and
U of Eq. (28) in the following way:

F(x)x(l)a “"m(l)—l)’x(P)’u, )‘7 67 S, t) = L
+ AT (F —2®) + €7(C + $?) (33)
U(z(ts), 2 (ts), .., 2PV (1), t5) = © (34)

where S2(t) = (s3(t) s2(t) ... s2(t))T is a-(r x 1)
positive slack vector for the constraints C, £(t) are
the corresponding Lagrange multipliers, A(¢) are La-
grange multipliers corresponding to the dynamic
equations. Using the general result of Eq. (28) and
recognizing that F' has dependence on other vari-
ables besides = and its higher derivatives, it is im-
mediate that the optimal solution must- sa’clsfy the
following differential -equations:

Fp— F 4+ (-PF) =0 (35)
F,=0 -~ (36)
€is:=0,i=1,..,1° (37)

along with Egs. (1) and (23). Using an expression
for H' = L+ AT f + ¢TC, one can easily show that
Eq. (35) simplifies to

)p—lHl(P—l) -

z(P—1) T

My =MD+ (1 (—1)PA®) | (38)

and has a structurc identical to Eq. (26). Eq. (36)
can be evaluated to show that :

F,=M,=0 (39)
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One interpretation of Eq. (39) is that on the optimal
trajectory, u{t) pointwise minimizes H’. An equiva-
lent statement is that u(t) pointwise minimizes H
subject to the constraints (23). Hence, u*(t) of
Eq. (39) also satisfies the following property

Hx(E), u*({), A ) = HX(E), u(t), A 8).

(40)
identical to Eq. (22). Eq. (37) has the following in-

min
u(t)€A(L,x)

terpretation: if C; <0, & =0and if C; =0, & > 0. -

Eq. (38) requires.boundary conditions on higher
derivatives of A. These boundary conditions can
be obtained from Eq. (28). Since initial condi-
tions on z(t), £ (¢),..., 2P~ 1) (¢) are specified, h(ty),
2D (to),....,AP=D(t0) are zero. Since terminal condi-
tions on these variables are free, the terms associated
with h(ts), A (ts),....,hP=D(t;) must be identically
zero. This reasoning gives us the following boundary
conditions:

[H;(k+1) - Hx((lk).‘a) + voe + (—l)p—k ZHE((I;:f) 2>
— (PRI £ B ], =0,
k= 0; P -1

On comparing Egs. (27) with (41) and bringing these
to a common index, it can be shown that the two are
identical.

In summary, the functions ¥, defined in Sec-
tion 2.2 are essentially same as A introduced in this
section. Both satisfy the same differential Egs. (26)
or (38) and the same boundary conditions (27) or
(41). The optimal u(¢) in both approaches are the
same.

3.2.1 First Integrals

For the system under consideration, F' = #'— ATz (®)
and H' = L+ ATf+¢7C. f L, f, and C are not
explicit functions of time, according to Section 3.1.1,
the solution has a first integral given by Eq. (32). On
siplifying, it can be shown that this equation reduces
to )
H =2 [y = HD) 4+ (~1)p 2B

_1)p A1)
~a®" My -1 4+ (1R

+ (1P INE-2]

T
—a DTy + XD = K (42)

With the equivalence between X and %, of Sec-
tion 2.2, one can rewrite Eq. (42) using Eq. (27)
as

"+l +yTa® 4+ gl 2P = K (43)

(1)

3.3 First-Order Representation -

An alternative approach to derive the necessary con-
ditions for minimum of the problem posed in Sec-
tion 1 is to first express the higher-order differential
Egs. (1) as a set of first-order differential equations
and then to use the classical results of the minimum
principle. This section outlines this procedure and
it is demonstrated that the results derived in this
way are consistent with the results from the earlier
approaches described in the paper where the system
equations are left in the higher-order form.

A simple way to express the higher-order sys-
tem by first-order differential equations is through
the definition of the extended vector x(t)T =
(z@®T 2M@)T ... =D ()T)T that was introduced
in Section 2. This vector has a dimension of (npx 1).
Let the individual (n x 1) subvectors of x(t) be re-
named as x;(t) = z(t), x2(t) = zV(t), ... x,(t) =

" 2P~V (¢). With this definition,

x1(t) = x2(t)
*2(t) = x3(t)

Xp-1(t) = %, ()
%p(t) = f(x1(t), %2(2), .5, xp(2), u(t), £) (44)

The cost functional J can also be restated using the
definitions of x;(¢). The result of Section 3.1 can
now be used to derive the necessary conditions of
optimum for this new problem as long as we use
p=11in Eq. (28).

With the dynamic optimization problem ex-

- pressed in first-order form, the deﬁnltlons of F and

V¥ in Eq. (28) are:

F(Xl (t), ceny Xp(t),)h (t), ...).Cp(t), /\1, seey /\p,u(t),
£,8,t) =L+ X (xg —%1) +...

+/\§_1(xp = Xp—1) + /\Z(f" %p) + &7 (C + 5%)
(45)
\I’(Xl(tf),X2(tf),...,xp(tf),tf) =& (46)

where S%(t) = (s3(t) s3(t) ... s2(t)T is a (r x 1)
positive slack vector for the constraints C, £(t) are
the corresponding Lagrange multipliers, and \;(¢)
are Lagrange multipliers corresponding to the state
equations.

Using the result of Eq. (28) with p = 1, it is
immediate that the optimal solution must satisfy the
following differential equations:

Fe~FM =0,i=1,..,p (47)

F,=0 (48)
£5i=0,i=1,..,7 (49)
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along with Egs. (23), (44) and (46). For this prob-
lem, we can define two different Hamiltonians and
it is important to distinguish between the two. For
this functional given in Eq. (45), the classical defin-
ition of augmented Hamiltonian is H., = L + /\g f+
€TC + ATxg + ..+ AL xp.
¢ has been used to dlstmgulsh it -from the Hamil-
tonian H' = L + AL f + ¢7C, descrlbed similar to
Sections 2.1.1 and 3 2.
One can now show that Eq. (47) simplifies to

’\1 + ch1
/\2 + chg =0
p——l + HCXP , =0
Sp+ MLy =0 (50)

or alternatively to
;\1 + 'H;I =
Ao+ A +H, =0

}\p—l + Ap—2 + H;p_l =0
Ap+ Apo1 + Hy, =0 (51)

Since Eq. (51) has a structure similar to Eq. (18),
we prefer to use H' in our work instead of H,. On
eliminating A; through A,_1 in this equation, similar
to Section 2.1.1, one can show that

Hy—HD o+ (—1PHETD = (—1)PAP, (52)
Eq. (48) can be evaluated to show that
F,=H,=0 (53)
which can also be interpreted as finding u*(¢) such
that

H(x(), v (1), A1) = u(t)rg}&t 9

H(x(t), ut), A\, t).

(54)
Eq. (49) has the followmg interpretation: if C; < 0,
& =0andifC; = 0, & > 0. Eq. (52) requires bound-
ary conditions on A\. These boundary conditions at
ts are obtafned by a logic similar to Section 3.2 and
it can be shown that they are consistent with those
obtained in the other approaches.

From these steps, it is now clear that a A, in
this section is same as A\ of Section 3.2 as well as
1p of Section 2.1.1. Also, a Ax, £ = 1,..,p—1
defined in this section is the same as ¥ of Sec-
tion 2.1.1. The definition of H’' is consistent within
all approaches and the optimal u(t) is obtained by

o2 o H(x(2), u(t), A, 1)

Here, the superscript

3.3.1 First Integrals

For the system under consideration, F = H' +
AT (x2 — %1) + .o + ATy (% — %p-1) — AT%,, where
H' = L+l f+£TC, According to the result of Sec-
tion 3.1.1, 1f F is not an explicit function of time, the
solution has a first integral given by Eq. (32) simpli-
fied for p = 1. This condition is

F— Z xe =K (55)
i=1

By evaluation, it can be shown equivalent to
H +Mx+ ..+ A %, = K (56)

This result is consistent with the result of Eq. (43).
Further, this is also equivalent to the statement
H. = K, consistent with the classical first-order re-
sult.

4 Example

From Sections 2 and 3, it is clear that there is a
coraplete equivalence between the optimization re-
sults whether they are derived using the higher-order
or the first-order form. This equivalence holds for
all systems, linear or nonlinear, as long as the con-
straints are consistent with the class proposed in this
paper. In this section, we provide an example of a
nonlinear system which can be written both in the
first-order and higher-order form.

Figure 1: Single-link robot with joint fexibility.

The example is of a single link manipulator ro-
tating in a vertical plane driven through a flexible
drive train [21], shown in Fig. 1, The system has
two degrees-of-freedom and the equations of motion
are

14 +mglsmq1 + k(g ~q2) =0 (57)
JeP — k(g — g2) = u, (58)
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where I and J are respectively the link and actuator
moment of inertia, mn is the mass of link with mass
center at a distance [ from the joint, & is the stiffness
‘of the drive train, g is the gravity constant, and w is
the actuator torque. Let the objective be to steer the
system from a given set of initial conditions on ¢, gz,

(1), and q at to to an unspec1ﬁed goal point while

minimizing a cost J = f u?dt. The trajectory must
to
satisfy the constraint —1 < » < 1 during motion.

For the purposes of optimization, one can pro-.

ceed in several alternative ways. For brevity, we will
describe only two out of four alternative ways in de-
tail. The two second-order differential equations de-
‘scribing the system have a special structure. From
Eq. (57), g2 can be written explictly in terms of ¢;
and its second derivative. On substituting this ex-
pression of g2 in Eq. (58), we obtain a single fourth-
order differential equation in the variable g; up to
its fourth derivatives

4 2
qg ) = a1u + (agcosqr + a;;)qi )
+ossingiq; (m? + assingy, (59)
where «; are constants with oy = %, ag = -—"}l
az = —%{2, Qq = Tj.ﬂ, and as = ~’—"—I-"Jﬂ. This .

differential equation has the structure of Eq. (1) with
n=1landm=1

Also, the fourth-order differential equation of .

Eq. (59) could be written in the first-order form

(l)

=25
iL‘g)f“(Eg
f.’L';(;)—I&; _a

( )= a1u+ (az COS Z1 +a3) ) + sin 23222,

+ assinzy: \ S (60)

where z; = ¢;. This differential equation has the
structure of Eq. (1) withn =4 and m = 1.
Eqgs. (57) and (58) are both second-order differ-

ential equatlons On solving for q(2) and q(2) from
these, one obtains the equations to have the form
Eq. (1) with n = 2 and m = 1. The fourth possi-
bility is that Eqs. {(57) and (58) are each reduced to
two first-order equations, thereby, producing a form
of Eq. (1) with n =4 and m = 1.

The optimization of this problem could be ad—
dressed using any of the four alternative descriptions
of the system. For brevity, we will only show the
equivalence of the results for the first two forms, i.e.,
the fourth-order form of Eq. (59) and the first-order
form of Eq. (60).

4.1 Fourth-Order Form

Using the fourth-order form, the H' = H = u? +
Moru+{ag cos ql-}—ag)q1 D faysin q1q§ ? +assing].
The feasible control is defined in the set I = [—1,1].
From the extended form of Pontryagin’s principle,
we need to select u such that H' is minimized. Since
u? + Aayu is the term in M’ that is dependent on wu,
it can also be written as (u + 222)? — (221)2, From
this form, it is evideat that u*, the minimum of u
within U/ satisfies the following switching structure:

1, A< -2
ut = —/\a1/2, -2 S al)\ S 2 . (61)
—1, .(11/\ > 2

~On evaluating Eq. (38), the following fourth-orcler

differential equation in A results
2@ /\(2)(a3 +agcosqy) — Aascosq =0 (62)

In summary, the optimal solution is characterized
by the fourth-order differential Eq. (59), the fourth-
order Lagrange multipler Eq. (62), and the switching
structure of Eq. (61). '

4.2 First-Order Form

One can elther work with H., and use Eq. (00) to
determine the Laarange mutiplier equation or use H’

with Eq. (51) to determine the Lagrange multipliers.

The two expressions are: H' = H = u? + Mfogu +
(o cos a4 +oz3)ac§2) +sinz; 222 +assinz, ] and H, =
He = u2+ M T2+ Aaz3 + Azzg + Agfayu+ (ag cos zy +
ag)zgm + sinz122? + assinz;]. Using the results
of Section 3.3, it can be shown that the Lagrange
multiplier equations in both cases are

MY = 2P (a5 + azcosz1) — Mas cosz =0 (63)

With either expression of the Hamiltonian, it is clear”

that «*, the minimum of v within L{ satisfies the
followmg switching structure:
’ 1, Ay < ~2 :
’LL* = —/\4a1/2, —2 S Otl/\4 S 2 (64)
-1, QiAg > 2

As expected, Egs. (62) and (63) are identical as long
as z is interpreted-as ¢; and X is interpreted as A4.
Similarly, Eqs. (61) and (64) are identical.

5 Numeric Computation

Even though the focus of this paper is on the under-
lying theory of optimization of higher-order systems,
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some brief insights into the numerical aspects of the
solution procedure using the higher-order form will
be discussed. We will outline a scheme for solving
Eqgs.(1) and (38) with the switching structure given
by (40). The procedure will be compared with an
equivalent procedure applied to first order form of
the optimality equations.

Our approach for solution is based on theory of
collocation and consists of the following steps: (i)
choose N intermediate points (nodes) between t,
and t; and divide the total time into V41 intervals;
(ii) choose an admissible form for q(t), A(t), and u(t)
in each of these intervals, i.c., form a base solution
and add mode functions to reﬁne the solution; (iii)
impose continuity of q(¢) and A(¢) upto p— 1th deriv-
ative at the N intermediate node points but allow
discontinuity of u(t); (iv) solve for the base solution
using the given boundary conditions of ¢ and A at ¢
and ¢ and continuity at the node points; (v) satisfy
the higher-order differential equations by choosing
.collocation points within each interval, i.e., each col-
location point provides n equations corresponding
to Egs.(1) and another n to Eq. (38); (vi) pose this
problem as a nonlinear programming problem with
the objective to find the best mode coefficients and
the location of the nodes such that 7’ is minimized
with respect to the input. The salient feature to note
here is that each collocation point gives 2n nonlinear
equations. .

If the same collocation procedure was applied
to the system equations and Lagrange multiplier
equations, each in the first-order form, every colo-
cation point will result in 2np nonlinear equations
in the nonlinear programming problem. Most com-
puter implementations of the classical first-order
form routinely implement this. As is evident, if
p = 1, the computations with the higher-order form
and the first-order form are identical but as p be-
comes larger, the higher-order approach provides a
lot fewer equations in the nonlinear programming
problem. For the example problem, the higher-order
forms of Egs.(59) and (62) have p = 4. Therefore, it
is more computationally efficient to use the higher-
order solution scheme outlined in this section. Cur-
rently, a general purpose program is being developed
based on these ideas.

6 Conclusion

In this paper, dynamic optimization of systems de-
scribed by higher-order differential equations is ad-
dressed. The minimum principle for higher-order
systems is derived directly from their higher-order
forms and the results are confirmed by classical the-

ory using first-order forms. The optimality condi-
tions are derived using both Hamilton-Jacobi theory,
thereby, extending Pontryagin’s theory and through
variational calculus. It is shown that the different
approaches lead to the same results. The result ap-
plicable to higher-order systems is illustrated by an
example. Also, insights are provided why numerical
implementation of the higher-order formulation is
computationally more efficient compared to the clas-
sical first-order approach. Currently, general pur-
pose programs are being developed that explmt the
features of this higher-order approach.
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