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Abstract 
This paper presents a backstepping boundary control for suppression of vibration of the mechanical 

systems. In this research, we use a shear beam with sliding base as a plant. The applications are such 
as space structure, industrial robotic arm etc. Most slender beams can be modeled using the shear beam. 
The shear beam is more complex than the conventional Euler-Bernoulli beam in that a shear deformation 
is additionally taken into account. The method allows us to deal directly with the beam’s partial differential 
equations (PDEs) without resorting to approximations. An observer is used to estimate the deflections 
along the beam. Gain kernel of the system is calculated and then used in the control law. The control set-
up is anti-collocation.  Finite difference equations are used to solve the PDEs and the partial integro-
differential equations (PIDEs). Numerical results for the control of a shear beam are presented via 
computer simulation to verify that the control scheme is effective. Control parameters are also varied to 
see their influences that affect the control performance.     

 
Keywords: Backstepping boundary control, Shear beam, Partial differential equations, Gain kernels, 

Observer, Finite difference equations   
 

1. Introduction 
Flexible beams constitute an important 

problem in many applications such as space 
structures, industrial robotic arms, cantilever 
cranes, helicopter rotor, astronomical telescopes, 
the atomic force microscope (AFM) in 
nanotechnology devices etc. In this paper, we 
consider a model of the undamped shear beam. 
Most of the slender beams can be represented by 

this model.  The beam system is distributed 
parameter in nature, so it’s governed by partial 
differential equations (PDEs). The model consists 
of a wave equation coupled with a second-order-
in-space ODE or can be alternatively represented 
as a fourth-order-in-space/second order-in-time 
PDE.  The shear beam is more complex than the 
Euler–Bernoulli model and slightly simpler than 
the Timoshenko model.  There are many models 
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for flexible beams such as Euler-Bernoulli, 
Rayleigh, shear and Timoshenko beam equations. 
Derivations and comparisons of these beam 
models can be found in [1]. 

Boundary control is preferable for controlling 
PDE systems since actuation and sensing are 
only through the boundary conditions [2]. For its 
historical development, the reader is referred to 
[3].  Morgul presented results for boundary control 
of infinite dimensional systems of Euler-Bernoulli 
[4]. The passivity property of nonlinear Euler-
Bernoulli beams has been studied in Fard [5]. 
The method guarantees finite gain L2 stability and 
passivity of closed-loop systems. Sasaki [6] used 
a Lyapunov functional of the system to derive the 
control law by minimizing the time rate of change 
of the functional at every point in time and using 
neural networks in tuning a control gain. 

Krstic et al. presented the backstepping 
boundary control for undamped shear beams with 
an anticollocated setup i.e. the sensing and the 
actuation are at different locations [7, 8, 9, 10]. 
Gain kernels for both controller and observer are 
found and used for control law design. The 
application is such as atomic force microscopy 
(AFM) where the piezo actuation is applied at the 
beam base. The industrial application is rather 
limited. Ali and Padhi presented active control of 
Euler-Bernoulli beams [11]. They proposed two 
state feedback controllers based on optimal 
dynamic inversion techniques. Boonkumkrong N. 
and Kuntanapreeda S. applied the method of 
backstepping boundary control to the thermal 
system experiment [12].  

This work is motivated by the interests in 
stabilizing vibrating slender bodies. The structure 

is modeled by a completely undamped shear 
beam model. The design is a combination of the 
classical damping boundary feedback idea with 
backstepping boundary control. The works of 
Fard, Sasaki and Krstic are the inspiration of this 
paper [5, 6, 7]. 

At present, the application of the 
backstepping boundary control is rather limited, 
due to the application of controllers to the beam 
is difficult. An objective of this paper is to apply 
the method to the problem of the free vibration 
suppression of the undamped shear beam with 
controllers applied to the beam by using sliding 
base. This is new method to apply the 
backstepping boundary controllers to the system.     

The rest of this article is organized as follows. 
Next section presents a mathematical model of 
the system. Brief explanations of the beam 
models are also provided. Backstepping boundary 
controller design is given in Section 3. In Section 
4, an observer design is present. Numerical 
studies are presented in Section 5. The results of 
simulation are given in Section 6. This article is 
concluded in the last section. 

2. Mathematical model 
The undamped shear beam model can be 

expressed by a second-order-in-time fourth-order-
in-space PDE, as follows [1] 

        0),(),(),(  txwtxwtxwa xxxxxxtttt     )1(  

where ),( txw is the beam deflection,  is a 
constant inversely proportional to the shear 
modulus and a  is a positive constant. The 
subscripts t and x  denote the partial 
differentiation with respect to time and space, 
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respectively. The deflection due to the mass of 
beam is neglected. 

The beam model can be also represented by 
a wave equation PDE coupled with a second-
order-in-space ODE as follows [1,14], 

)1,0(),,(),(),(  xtxtxwtxw xxxtt       )2(                                          

 ,022  xxx wbb 
        

)3(  

where  is the rotating angle as a result of the 
bending moment of the beam and ab  .  
The derivations of beam models Eq. (1) and Eqs. 
(2) - (3), can be found in [14]. In [14], one can 
verify that both models are equivalent.  

In Fig. 1, the beam is free at one end )0( x  
and has the following boundary conditions [1],  

0),0(),0(  ttwx    
       

)4(  

.0),0( tx                    )5(  

Eq. (4) and Eq. (5) mean that the shear force 
and the moment are both zero at the free end, 
respectively. The boundary condition of the other 
end )1( x with a controller, )(tU to be designed, 
is as follows [6], 

    ),(),1(),1(
)(

2

2

tUttw
dt

tWd
m xb  

   
)6(  

where bm is the mass of sliding base, )(tW is the 
displacement of the base, the terms in the 
parentheses on the right-hand side of Eq. (6) is a 
shear force exerts on the base [4]. The beam 
model, Eqs. (2) - (3) is used to design the control 
law. Note that ),1()( twtW  . 

 

Fig. 1 Shear beam with a controller, )(tU   

3. Backstepping Boundary Control 
In this section, backstepping boundary control 

method is presented.  Control law is then 
formulated.  

3.1  Backstepping Boundary Control Design 
The system, Eqs. (2) - (3), will be first re-

written in a hyperbolic partial integro-differential 
equation (PIDE) as the following, 








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
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
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dytywybb

twbbt

b

bxb

dytywyxbb

twbxbtxwbtxwtxw
x

xxtt





)7(  

}.),()]1([cosh

),0()sinh(),1({
)cosh(

1
),0(

1

0

2  



dytywybb

twbbt
b

twx 
    )8(  

Eq. (7) and (8) are obtained by solving the 
ODE Eq. (3) as a two point boundary value 
problem using Laplace transform in the spatial 
variable x as follows [7] 

  .),())((sinh

),0()(cosh),(

0 


x

y dytywyxbb

tbxtx 
  )9(  

)(tU

1x
x

w

bm )(tW
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The term ),0( t   in Eq. (9) can be expressed 
in term of ),1( t by evaluating Eq. (9) at 1x to 
get 

 


1

0
),())1((sinh

),0()(cosh),1(

dytywybb

tbt

y


   )10(  

Solve Eq. (10) for ),0( t , 

}),())1((sinh

),1({
)(cosh

1
),0(

1

0 



dytywybb

t
b

t

y


)11(        

 
Integrating by parts the integral term on the 

right side of Eq. (11) to get 

}),())1((cosh

),0()(sinh),1({
)(cosh

1
),0(

1

0

2  



dytywybb

twbbt
b

t 

  )12(  

The integral term on the right hand side of Eq. 
(12) is not spatially casual because the upper 
limit of integration is 1. To put the system into a 
strictly feedback form, we eliminate this integral 
by choosing the first controller as follows, 

    .),())1((cosh

),0()(sinh),1(
1

0

2  



dytywybb

twbbt
 )13(  

So that 0),0( t in Eq. (12). Then Eq. (9) 
becomes, 

.),())((cosh

),0()(sinh),(

0

2  


x

dytywyxbb

twbxbtx
 )14(  

Note that the upper limit of integration is now x .  
Differentiate ),( tx with respect to x and 

substituting the results into the wave equation Eq. 
(2), we get the system in the strictly feedback 
form for control design, 

.),())((sinh

),0()(cosh),(),(

0

3

2

 


x

xxtt

dytywyxbb

twbxbtxwtxw
    )15(  

  
.0),0( twx                                        )16(  

Using the following transformation [7], 


x

dytywyxkyxwyxv
0

),(),(),(),(     )17(  

to map the system Eq. (2) into the following 
exponentially stable target system 

             ),,(),( txvtxv xxtt             )18(   

                ),,0(),0( 0 tvctvx         )19(  

                ),1(),1( 1 tvctv tx                )20(  

where c0 and c1 are design parameters. Stability 
proof of Eq. (18) – (20) can be found in [9]. 

Substituting the transformation Eq. (17) into 
the target system, Eqs. (18) – (20), we can derive 
the following PDE for gain kernel ),( yxk [13]: 




x

yyxx

dtwxkb

yxbbyxkyxk

0

3

2

),(),(

))((sinh),(),(

    )21(  

       
02

),( cxxxk 


                  )22(  

 )cosh(

)(cosh),()0,(

2

0

2

bxb

dbxkbxk
x

y



  
       )23(                

The second boundary controller is obtained by 
differentiating Eq. (17) with respect to x and 
setting 1x : [13] 







1

011

1

0

),(),1(),1(

),(),(),1()1,1(),1(

dytywykctwc

dytywyxktwktw

tt

xx

  )24(  

Stability proof of the feedback control can be 
found in [10]. Gain kernels ),1( yk and ),1( ykx of 
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control law Eq. (24) are shown in Fig. 2 and Fig. 
3, respectively. 
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Fig. 2 The plot of the gain kernel ),1( yk . 
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Fig. 3 The plot of the gain kernel ),1( ykx . 

In backstepping boundary control method, we 
use the controller, which consists of two 
equations i.e. Eq. (13) and Eq. (24) to control the 
beam. Fig. 4 shows the transformation from 
cantilevered beam to target system. The first part 
of controller, ),1( t converts the free end into a 
sliding end i.e. 0),0( t and then the second 
part of the controller, ),1( twx , converts the beam 
into taut string with a stiff spring at the tip, Eq. 
(19) and a tuned damper at the base, Eq. (20). 

The first controller, Eq. (13) is combined to the 
beam model, Eqs. (7) - (8), so the controller, Eq. 
(24) is applied at the sliding base as follows, 

        









1

01

1

1

0

),(),1(

),1(),(),(

),1()1,1()(

dytywykc

twcdytywyxk

twktU

t

tx     )25(  

 

  

Fig. 4 Feedback transformation for beam. 

4. Observer Design  
For the backstepping boundary control method, 

the states along the beam is needed for control 
law calculation, but the only possible 
measurement of the system is at the 
boundary, 0x .  The Luenberger-like observer 
is used to estimate beam deflections along the 
beam [10]. 

Consider the following beam model,          

)0()(sinh)0()(cosh

),())(sinh(

),(),(

2

0

3





bxbwbxb

dxtywyxbb

txwtxw
x

xxtt







     )26(          

   ),0(),0( ttwx          )27(  

The Luenberger-like observer is given by [10] 

),( txw

x

controlno

1c0c x

),( txv ),1(),1( twt 

),1( t
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)],0(ˆ),0([)0,(

)0()(sinh)0()(cosh

),())(sinh(

),(ˆ),(ˆ),(ˆ
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    )29(     

       ),1(),1(ˆ twtw                              )30(  

The observer gains )0,(xpy in Eq. (18) 
and )0,0(p in Eq. (29) are determined by solving 
the PDE [10],    

     
 


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x

y
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        .0),1( yp          )33(  

Defining the observer error as www ˆ~  and 
substracting Eqs. (28) - (29) from Eqs. (26) - (27) 
we obtain the observer error PDE, 

  
),0(~)0,(

),(~))(sinh(

),(~),(~),(~

0

3

2

twxp

dxtywyxbb

txwbtxwtxw

y

x
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





     )34(  

   ),0(~~),0(~)0,0(),0(~
0 twctwptw tx        )35(  

     .0),1(~ tw                              )36(  

Using the following transformation,  

dytyvyxptxvtxw
x

),(~),(),(~),(~
0       )37(  

to convert the error system Eqs. (34) - (36) into 

            ),(~),(~ txvtxv xxtt                    )38(  

                    ),0(~~),0(~
0 tvctv tx                 )39(  

                    ,0),1(~ tv           )40(  

which is known to be exponentially stable, see 
[10]. 

The gain kernel PDEs can be solved either 
numerically or recursively, but in this paper, we 
solve them numerically. The plot of observer gain 
kernel )1,(xp  and )1,(xpy are shown in Fig. 5 
and Fig. 6, respectively. 
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Fig. 5 The plot of the observer gain 
kernel )1,(xp . 
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Fig. 6 The plot of the observer gain 

kernel )1,(xpy . 
 

5. Numerical Calculation 
The beam model with strictly feedback form, 

Eq. (15) is a second-order-in-time second-order-
in-space partial integro-differential equation 
(PIDE) and is used in a numerical calculation. It is 
a simple second-order partial differential equation 



                The 28th Conference of the Mechanical Engineering Network of Thailand 
                        15-17 October 2014, Khon Kaen 
 
  

1119 
 

 
DRC-30 

with the integration terms, and can be easily 
solved by a finite difference equation.  

The highest order of the PIDE that we study in 
this paper is second order, so we have the 
following finite difference approximations [15]: 
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For the integration approximation, we use the 
trapezoidal integration rule as follows, 
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Substituting Eqs. (41) – (43) into Eq. (15), we 
get the following finite difference equation, 
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Where x  and t  are the spatial and the 
temporal increments indexed by m  and n , which 
start from 1 to M and N, respectively and 

xtr   Fig. 7 shows the calculation grid with 
spacing x in the row and t in the column. The 
dark circles (the first and second rows from the 
bottom) are the values obtained by the initial 
conditions and the grey circle )( 1n

mw is the point to 
be calculated. 

With the boundary condition, Eq. (16), one can 
obtain the first element )( 1

1
nw of each row and 

from the controller, Eq. (25) and the boundary 
conditions Eq. (6), the last element of the 
row )( 1n

Mw is obtained. 
 

 
Fig. 7 Calculation grid 

 
6. Simulation 

In this section, the simulation results are 
presented. The shear beam is simulated using 
the finite difference equations mentioned in the 
last section. The beam started to vibrate under 
the following initial conditions (see Fig. 8) [8]:   

))1(6.1(sin)1(1.0)0,( 2 xxxw          )45(  

),)1(6.1(sin)1(1.0)0,( 2 xxxwt    )46(  

where Eq. (45) is the initial displacement, and Eq. 
(46) is the initial velocity at  0t .  
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Fig. 8 Initial conditions 

The beam was simulated with the parameter 
of beam material 1  and 6.0b . The mass of 
the sliding base was fixed at 01.0bm , and the 
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spring and damping constants were set 
at 10 c and 11 c , respectively. The parameter for 
observer Eq. (29) is set at 15~

0 c  [8]. The grid 
size is 20M  in space and time step 

01.0t with final time 30T  units. Since there 
is no damping term in the beam model, and also 
no external force exerted, the beam with zero 
Dirichlet boundary condition at 1x i.e. the slider 
is fixed, will vibrate perpetually as shown in Fig. 9. 
The tip displacement at 0x is shown in Fig. 10. 
This is the uncontrolled case. 

 
Fig. 9 Beam vibration without control in 3-D  
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Fig. 10 Tip displacement of the Beam 

The simulation of the shear beam with the 
control law, Eq. (25) is shown. The simulations of 
the shear beam with full-state control and with 
observer are shown in Fig. 11 and Fig.12, 
respectively. We see that the responses are the 
same. Note that the initial conditions for observer 
are 50% more than the values of Eq. (45) and Eq. 
(46).  

The control action and tip displacement are 
shown in Fig. 13 and Fig. 14, respectively. The 
settling time is about 20t . 

 

 
Fig. 11 Shear beam simulation with control 

 

 
Fig. 12 Shear beam simulation with observer 
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Fig. 13 Control action, ),1( tw . 
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Fig. 14 Tip displacement, ),0( tw . 

6.1 Parameter Tunings  

In this sub-section, we study parameter 
changes that affect the control performance. First, 
we fix damping constant at 0.11 c and vary 
spring constants at various values, 0c  at 0.5, 1.0 
and 2.0. Fig. 15 shows tip displacements.  

In the case of a weak value of damping i.e. 
5.00 c , the response takes a longer time to 

settle at 30t and for the strong values of 
damping constant, it takes about  20t . 

 

0 5 10 15 20 25 30
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

t

w
(0

,t
)

Tip displacement (BBC), c
1
 = 1.0

 

 

c
0
 = 0.5

c
0
 = 1.0

c
0
 = 2.0

 
Fig. 15 Tip displacement with various spring 

constants )( 0c . 
In the second case, we fix spring constant at 

0.10 c and in this time, we vary damping 
constants at various values, 1c  at 0.5, 1.0 and 
2.0. Fig. 16 shows tip displacements of the beam. 
In the case of a weak value of damping i.e. 

5.01 c , the response takes a longer time to 
settle at 30t and for the strong values of 
damping constant, it takes about  20t . 
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Fig. 16 Tip displacements with various 
damping constants )( 1c . 

 

7. Conclusion 
Backstepping boundary control is applied to 

the problem of vibration suppression of the 
undamped shear beam. The beam model 
consists of a wave equation, coupled with a 
second-order-in-space ODE. An observer is used 
to estimate the deflections along the beam. Gain 
kernel of the system is calculated and then used 
in the control law. Finite difference equations are 
used to solve the PDEs and the partial integro-
differential equations (PIDEs). Numerical results 
for the control of a shear beam are presented to 
verify that the control scheme is effective.  

The control scheme is effective in suppressing 
the vibration of the beam, and the parameters, i.e. 

0c and 1c , can be tuned to obtain the control with 
the desired behaviors.  For further research, the 
other boundary control methods such as 
passivity-based control method will be applied to 
the shear beam and their performance will be 
compared.    

8. References 
[1] Han S.M., Benaroya H. and Wei T. (1999), 

Dynamics of Transversely Vibrating beams using 
Four engineering Theories, Journal of Sound and 
Vibration, Vol. 225, 1999, pp. 935-988, 1999 

[2] Smyshlyaev, A and Miroslav, M. (2004) 
Closed form boundary state feedbacks for a class 
of 1-D partial        integro-differential equations, 
IEEE Trans. On Automatic Control, Vol. 49, No. 
12, pp. 2185-2202, 2004. 



                The 28th Conference of the Mechanical Engineering Network of Thailand 
                        15-17 October 2014, Khon Kaen 
 
  

1122 
 

 
DRC-30 

 [3] Padhi, R. and Ali, Sk F. (2009) An 
Account of Chronological developments in Control 
of Distributed Parameter Systems, Annual reviews 
in Control 33, pp. 59-68, 2009. 

[4] Morgul O. (1992) Dynamic boundary 
control of the Timoshenko beam, Automatica, vol. 
28, pp. 1255-1260, 1992.   

[5] Fard, M.P., (2002) Passivity Analysis of 
Nonlinear Euler-Bernoulli Beams, Modeling, 
Identification and Control, Vol. 23, No. 4 pp. 239-
258, 2002. 

[6] Sasaki M., (2000) Asai H., Kawafuku M., 
and Hori Y., Self-tuning Control of a Translational 
Flexible arm using Neural networks, in 
Proceedings of the IEEE International Conference 
on Systems, Man and Cybernetics, pp. 3259-3264, 
Nashville, Tennessee, USA, October 2000. 

[7] Krstic, M., Balogh, A. and Smyshlyaev, A., 
(2006) Backstepping Boundary Controller and 
Observer for the Undamped Shear Beam, 
Proceedings of the 17th International Symposium 
on Mathematical Theory of Networks and Systems, 
Kyoto, Japan, 24-28 July, 2006. 

[8] Krstic M, Balogh A, and Smyshlyaev A,  
(2000) Backstepping Boundary Controllers for 
Tip-Force Induced Flexible Beam Instabilities 
Arising in AFM, Proceedings of the 45th IEEE 
Conference on Decision & Control, Manchester 
Grand Hyatt Hotel San Diego, CA, USA, 13-15 
December, 2006 

[9] Krstic M, Siranosian A, Balogh A. and Guo 
BZ, (2007) Control of Strings and Flexible Beams 
by Backstepping Boundary Control, Proceedings 
of the 2007 American Control Conference, Marriott 
Marquis Hotel at Times Square New York City, 
USA, 11-13 July, 2007 

[10] Krstic M, Guo BZ., (2008) Control of A tip-
force destabilized Shear beam by Observer-
based Boundary feedback, Journal of Control 
Optimization, Vol. 47, No. 2, pp. 553–574, SIAM, 
2008. 

 [11] Ali SF and Padhi R., (2009) Active 
vibration suppression of non-linear beams using 
optimal dynamic inversion. Proc IMechE, vol. 223 
Part I: Journal of Systems and Control 
Engineering, pp. 657-672, 2009. 

[12] Boonkumkrong N. and Kuntanapreeda S. 
(2014) Backstepping boundary control: An 
application to rod temperature control with 
Neumann boundary condition, Proc IMechE, vol. 
228 Part I: Journal of Systems and Control 
Engineering, pp. 295-302, 2014. 

[13] Krstic M., Smyshlyaev A.,“Boundary 
Control of PDEs: A Course on Backstepping 
Designs” SIAM, Philadelphia, PS 19104-2688 
USA, 2008. 

[14] Rao S.S., “Mechanical Vibrations”, Third 
edition, Addison-Wesley Publishing Company, 
1995. 

[15] Mathews, J.H. and Fink, K.D. Numerical 
Methods Using MATLAB, Prentice Hall, Upper 
Saddle River, NJ 07458.  

  
 
 


