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The Filter Back-projection method is used to reconstruct axisymmetrical and
asymmetrical flame-property profiles from their computer simulated projection
functions. The effect of the mathematical shape of the profiles, the lateral and angular
sampling rates and of the measurement noise on reconstruction accuracy are studied.
Deviations between the test profile and the reconstructed profile are quantitatively
evaluated. Their dependence on the filter functions and on the sampling rates are also
examined. It has been found that reconstruction by the Filter Back-projection method is

. very tolerant of noise, since high frequency terms tend to be removed by filtering and

t that the method is capable of reconstructing an arbitrary 2-D function.
!
3

1. Introduction

Absorption Tomography is an optical measurement technique for
monitoring thermodynamic properties in combustion flames. By
this method, two-dimensional property fields across a flame are
reconstructed from their multi-angular path measurement projection
data (see Fig.1). This provides a major advantage over customary
optical point measurement techniques in that the property fields of
species with low concentration for all points in the flame cross-
sections can be reconstructed simultaneously from the same set of
projection data. R

For absorption measurement in a homogeneous media, a
monochromatic pencil beam of ray having an intensity I, , when
passing through a uniform medium, is attenuated in accordance

with Beer’s law,

I=1e"
where K is the absorption coefficient and [ is the emerging
intensity after attenuation along the path length s.
In gaseous mixtures, the absorption coefficient K, in the thermal
model is both temperature dependent and nonhomogeneous.
Hughey and Santavicca [1] rewrite Beer’s law in the form

(—ij”t/x}

I'=1e
where K = pP, , p is the partial pressure:of the absorbing
species, P, (cm-1atm.1) the volume absorption coefficient at
frequency @ , and s the optical path length. The projection
functions can be found experimentally from the absorption data,

hence,

det ector I
Do(r)= prds=—ln1— .

0

source




Tomographic techniques provide solutions to this equation for
pP, which is in tun a function of gas temperature and
concentration. The “two-line” method is used to obtain the
temperature and absorbing species concentration [1]. This method
involves making two sets of line center absorption measurements
at different wavelengths. The knowledge of the line center
absorption coefficients and their temperature dependence is readily
available from the literature [2]. Hughey and Santavicca [1]
assumed as a simplification, that the absorption coefficients vary

linearly with temperature. A linear absorption model for the R(6)
and R(19) lines of the CO 4.7\l band [1] was extrapolated to high
temperature to give the empirical relations:

P, =58.1-0024T

P, =-1899+0.092T.
These are used in the reconstruction process. Substituting these
equations into the reconstruction results in

fi(x,y)=pP,(x,y), i=12

and solving for the temperature gives

1) S8LEA%, )+ 18.99F (%)
(0= G002 (%9 )+00241,(x,y)

Once the temperature is known , p(x,y) can then be calculated

and the concentrations are found through the equation of state.
The key to the combustion tomography problem is to accurately
reconstruct the 2-D absorption coefficient functions from their 1-D

projections.

*-Combustion . -

Property distribution
at given cross-section
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Figure 1 A typical scanning from tomographic measurement

Chen and Goulard [2] introduced a generalized onion peeling
inversion method to measure pollutant emitted from jet engine
exhaust flows. The method determines the two-dimensional
property fields, beginning at the exterior shell, proceeding inward
shell by shell as in a peeling process. The technique is very
sensitive to measurement noise such that errors accumulate with
the peeling process, leading to unstable solutions. Emmerman, et
al [3] overcame the accumulation errors by introducing a

mathematical transform technique called Filter Back-projection

(FBP) technique.

data into the frequency domain where noisy components can be

The FBP technique transforms the absorption
truncated. Hughey and Santavicca [1] pointed out in their
computer simulated noisy absorption measurement data of
axisymmetric reacting flow fields that the FBP outperforms the
onion peeling. The FBP also has advantage over customary Abel
transform [4] techniques in that it can reconstruct a more general
2-D function. Although the FBP technique is very tolerant of noise,
frequency response of different filter functions and the averaging
nature of the 2-D mathematical transform have to be studied.

In this paper, mathematical profiles are reconstructed from their
computer simulated projection data, using the classical FBP
algorithm.  Reconstruction from synthetic projections allows the

reconstruction algorithm to be evaluated independently of

measurement noise. Effects of lateral and angular sampling
frequencies, of obstacles along the absorption paths and of

fictitious noise on the reconstruction results are studied.

2, Definitions

The test functions, their projections and the “Picture distance”
which is used to evaluate the resemblance between the
reconstruction results and the test functions are mathematically

defined in this section.

2.1 The Test Functions

Three test functions are employed in this paper. These are:
Gaussian, multi-layer top hat, and a combination of an off-center
Gaussian profiles and three ellipsoidal.

(Fig.3) is defined by

The Gaussian profile

f(x,y) - e~c(.\:+)":) ‘
where the constant “c” is set to be 20.
A multi-layer top hat profile (Fig.4) is the summation of co-center
top hat profiles of different radii, hence,
p, for X*+y' <A’
f(xy)=
0 otherwise ,
pi are set to be 0.2, 0.5, 0.7 and 1.0 when A; equal 0.65, 0.50,
0.35 and 0.20 correspondingly.
The third test function is a combination of an off-center Gaussian
profile, an ellipse, a hollow cylinder, confined in a circular wall
(Fig.12c). We write

f(xy)=fi+fi+fi+f,

fl - e—C[(v\*.\‘)JH\‘*)'I):I i

The constant ¢, x; and y; are 20, 0.24 and 0.24 respectively.




otherwise ,
where p , A and B are 0.3, 0.35 and 0.15 respectively while
functions p and g are defined by
p=(x—x,)cosO+(y-y,)sin0
qg=(y-y,)cos0 —(x—x,)sin6 ,
where x;, y; and 0 are 0.2 , -0.4 and 20 degree respectively.
jp for r, <(x-x,F +(y=y,) <1,
fi=
[0 otherwise ,
where P, Iy, Your , X; and y; are 0.2, 0.1, 0.24, -0.4 and 0.1
- respectively.
jp for r,<x’+y’<r,
f.=
lO otherwise ,

where p, iy and 7, is 0.2, 0.8 and 0.9 respectively.

2.2 The Projections
A projection is a mapping of a two-dimensional function into a
one-dimensional one, which can be obtained by integrating the

function in a particular direction. The projection of f{x,y) along
G'L- direction is
Do(r)= r Jm fix, y)0(xcosO + ysin® — r)dxdy
where &(X) is defined by,
_J)1
sx={}

We may interpret f in the (r,s) coordinate system, rotating from

x=0
otherwise.

(x,y) coordinate system by the angle 6 . With this representation,
the integral is along the s-axis and the projection function can be

written as

po(r) = | fns)ds.

The projection function of Gaussian profile is

p(r)= \/Ee :
c

The projection function of the multi-layer top hat profile is

2p AT -1 forf< 4
p(r)=
0 otherwise ,

where p; equals 0.2, 0.5, 0.7 and 1.0 when A; being set at 0.65,
0.50, 0.35 and 0.20 respectively. Subscript O has been omitted
since both the Gaussian and the multi-layer top hat functions are
axisymmetric.

The projection function of the combination of off-center Gaussian

profile and the three ellipsoidal functions is
Po(T)=py(r)+ po(r)+py(r)+py(r),

T —c(r-RY
pé(r):\/;e (r-R) )
where R=4/x,"+y/ cos{[tan‘{%—}]— 0}
1

Functions p;’(r), p;(r) and p,(r) are built from

2 pAB T Y
—az(e-a)‘/“(o o)-(r—R)
p(r)=1 for |r|£a(9—(x)
0 for |r|>a(9—a),
where,

a’(0-a)=A’cos’(0—-a )+ B’ sin*(6-w)

and  R=qx+y; cos{[tan"(z‘—]] -0j.
xl

The constants x;, y;,, A, B, ¢ and p corresponding to each
projection function are shown in Table1. Descriptive meaning of

these constants are shown in Fig.2.

I,

p(n)

Figure 2 Descriptive meaning of the parameters of an ellipse.

Table 1 Constants in the projection with obstacles

Obstacle X1 Y1 A B @ p
pi(r) 02 04 035 015 20° 03
p;’l(r) -0.4 0.1 0.24 0.24 0° 0.2
p(r) | 04 o1 0.1 0.1 0° 0.2

pri(r) 0.0 0.0 0.9 0.9 0° 0.2
pi(r) 0.0 0.0 0.8 0.8 0° 0.2

pa(r)=py'(r)=p;*(r) | pa(r)=p;'(r)=p;°(r)

2.3 Picture Distance

In order to evaluate the resemblance between the test profile
and its reconstruction result, we used the concept of “Picture
distance” [5]: it is the normalized root-mean-square distance, d, as

defined by




4M2

M

N(T, R, )
M _r )2

]=Il m

d= |% :
Y >(r1, -1,
Jj=n k=m

where Tj,k is the value of original profile, Rj,k is the reconstruction,

and T,eqn the average value of Tj,k over the region of interest.

3. Filter Back-Projection (FBP) algorithm [6]

3.1 Projection-Slice Theorem

Consider two-dimensional Fourier transform of f{x,y) ,

FXY) = J’” r flx, y)e ™ dxdy .

Rotate the function f{x,y) to a new (7,s) coordinate system.
F(X', Y) — Jwa ‘rg f(r, S)e—i[X(rcase-sxinG )+Y(rsin9+xcos9)]drds

=F,(RS),
where R and S are XcosO+Ysin@ and Ycos6-Xsin@

respectively. From the rotated function fi7,s) , the projection is

po(r) = [ fi(rs)ds

and the Fourier transform of pg(r) being

B(R)=[_[ fo(r.s)e™dsdr.
Comparing Pg(R) with Fg(R,S) it appears that Po(R) is equivalent
to Fo(R,S) along R or
B(R)=F,(RS) .
The above equation is the “Projection-Slice theorem” which
states that the one-dimensional Fourier transform of a projection is
a “slice” through the two-dimensional Fourier transform of the

original function.

3.2 The Reconstruction Formula

It follows from the Projection-Slice theorem that if an infinite
number of Fourier slices are taken from the corresponding infinite
number of projections, F(X,Y) would be known at all points in the
(X,Y) plane.

Knowing F(X,Y), the function f{x,y) can be recovered by using
the inverse Fourier transform:

f(xy)= 12

4r
Rewriting the above equation in polar coordinates we have

j_ J:F( X,Y )& ™M dxdy |

1 2 . )
f(x’y)=zn—_2—‘[) -[:F(R,e)elk(xcoso+)’sxn8)Rdee )

The function F(R, 0) is equivalent to Fo(R,S) I s=0 orto Po(R) by
the Projection Slice theorem. Also Fg.;50(-R,S) is Fy(R,S),
hence,

1
ar’

fxy)=2=] | B(R)e*IRaRds .

The above integral is not bounded since |R| dose not converge.
Therefore R should be limited to some value |Rl < £2. We now
introduce a band limited filter H(R) = b(R)IR| where

1 if|R|S.Q
b(R)=
0 if|R|>Q
The lateral sampling has an interval “a”, hence by the sampling
theorem,

T
'Q = 277‘"1!“’ =
a

Replace |R| by H(R) and use the convolution theorem to give the

required reconstruction formula

J )
f(x,y):aj; _Lpg(‘r_h(xcos9+ ysin@—1)dwd6 |
where h(r) is the inverse Fourier transform of H(R) which can be
written analytically as
’_Qz
2r

,r=0
h(r)=1

1[20 2 2]
—[—sin(.Qr)+—zc0s(.Qr)——2J NEX
2L r r r

3.3 Numerical Implementation

The filter function A(7) is written into a discrete from h(r,=ak)
fork = 0,1,....M-1 as

T
h(0)=2a2
2
h(rk)=—m ,k = odd
hr,)=0 Jk = even .

The above equations define the “Ramachandran filter function”
(RMCD)(see Fig.5) which is found to be somewhat oscillatory.
Shepp and Logan [7], introduce another filter with a more damped
response,

4

This equation is called the “Shepp and Logan filter function”

(SL)(see Fig.6).

Therefore, the discrete approximation for the filter back-

h(r,)=- k=0x1,...HM-1) .

projection formula can be written as
a N M
f(x,y)=—2N22p9’(rk Jh( xcos(6, )+ ysin(6,)=r.),
j=1 k=1
where M is the number of sampling points and N the number of

sampling angles.

4. Reconstruction Results and Discussions

Effects of sampling rate and measurement noise on

reconstruction accuracy are studied in this section by using FBP

technique to reconstruct two simple profiles: Gaussian and multi-




: U (a) (b)

Figure 12  Reconstruction result of :-
(a) Gaussian profile with RMCD filter with noise added (M=64, N=90)
(b) Gaussian profile with SL filter with noise added (M=64, N=90)
(c) True function of off-center Gaussian profile with obstacles
(d) Off-center Gaussian profile with obstacles (M=64, N=90)

without noise (use SL filter function)




layer top hat. Each test profile has different characteristics both in
space and frequency domains. We also advance the technique to
reconstruct a combination of Gaussian and ellipsoid functions fror:
their projections in order to demonstrate its capability for
reconstructing an arbitrary two dimensional function.

It is shown in Fig. 7 and Fig. 8 that small angular sampling rates
has a considerable effect on the reconstruction results. This is
because the filter function used in this study contains a large
difference between its highest positive value and lowest negative
value (Fig 5a), yielding deep negative values and high positive
values of the back project filtered function in the space domain.
These values from such view angles cannot be compensated by
the summation of a few sampling angles and hence noise-like
patterns appear. It is shown in the picture distance measurement
(Fig. 9), especially in the multi-layer top hat profile, that whenever
we try to catch the high frequency signal by increasing the lateral
sampling rate (in order to meet the sampling theorem requirement
and to reduce Gibbs phenomenon [4]), we are forced to increase
the angular sampling rate, otherwise the noise-like patterns will
appear. Choosing filter functions that exhibit a small difference
between the highest positive value and the IoVyest negative value
(for example, see SL filter Fig. 6a) is another way to reduce this
noise-like pattern. Then less angular samplings are needed to
compensate the over and under-shooting effect of the filter function
used (compare Fig. 12a with b).

The effect of measurement noise on reconstruction results can
be evaluated by comparing the reconstruction  from noisy
projections (fictitious noise in our case) with the one from noise
free projection. Fig. 10 shows the projection of the Gaussian
function, corrupted with fictitious random noise of magnitude limited

to 1% of the maximum value of the projection data. Since the

Fourier transform of a Gaussian is also a Gaussian then the"

Fourier components should have decayed exponentially with
increasing frequency. Conversely, in this particular case, the
corrupted noise appears as the high frequency Fourier components
and hence increasing the lateral sampling rate means intrbducing
more noisy components into the reconstruction process. This
results in a larger value of the picture distance as shown in Fig 11.
Using the SL filter improves the reconstruction results (see both
Fig.11 and Fig.12). This is because the SL filter is less sensitive
to the high frequency signal than the RMCD, as already shown in
Fig. 6. Therefore in the case of reconstruction from noisy
projections, the SL filter-is preferred.

The above discussions are applicable for the reconstruction of
an asymmetric profile. Fig. 12 shows an arbitrary two dimensional
test function and its FBP reconstruction result. The Gibbs errors

due to discontinuity can be reduced by increasing the lateral

sampling frequency. This, however, should be accompanied with

the increasing angular sampling so that the noise-like pattern is
minimized. Since measurement noise is not involved then RMCD

filter is preferred.

5. Conclusion and Future Directions for Research

The FBP algorithm for reconstructing mean combustion field
property from their computer simulated data has been evaluated.
The major practical limitation of the method appears to be the need
for many angular viewing angles. This is partly due to the choice
of inversion method: mathematical transforms methods are not best
suited to Gaussian profiles. Improved algorithms and filters should
be evolved.

Also recent techniques have been used  outside of the
combustion diagnostics field: pattern recognition and maximum
entropy methods come to mind. Current research on wavelets
seem to be relevant to this particular problem. For practical
purpose, a method tolerant of limited angular access (industrial
combustors) would be most desirable. A more advanced
tomographic algorithms for reconstructing fluctuating fields such as
fluctuating property field in turbulent flames is also a challenging

research area.
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Figure 3 True function of Gaussian profile and its projection.

Figure 4 True function of multi-layer-top hat profile and its projection.
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Figure 6 Shepp and Logan filter function in spatial domain (a) and frequency domain (b) with M=128




Figure 7 Reconstruction result of Gaussian profile with 64 sampling points

(a) 6 sampling angles and (b)18 sampling angles

,, o f "ll'c,m«\\!&\s%

* = ;f.;;zm}mm > Al
] 3 Ols l ““H ‘ ‘\\\
o 'mm w"\m\\"""" !ii,z'l/m'cm'«v»'\\\\&“‘ .5

w\ IA" Nl

(@) (b)

Figure 8 Reconstruction result of multi-layer top hat profile with 64 sampling points
(a) 18 sampling angles and (b) 180 sampling angles
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