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1. Introduction

v ¢ ¢ YV a
MMSUAENATTIWDSINasR895
a 6 a ¢
TWlurianinasisurinazn15as1z%
rlianyszand

Finite Difference Solutions to The Burgers

Equation and Applications to Wavelet

Analysis
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Solutions to the Burgers equation are determined from finite difference schemes. The time
splitting technique is used to bisect the Burgers equation into a non-linear convection and a
linear dissipation parts. Four finite difference techniques are used to solve the non-linear part.
The first two are explicit techniques: a third order Adams-Brashford (AB) technique and the
Quadratic Upstream Interpolation for Convective Kinematics (QUICK) technique. The other
two are linearization techniques: Newton’s (NL)and Richtmyer’'s (RL) linearization techniques.
On the other hand, Crank-Nicolson (CN) scheme (an unconditional stable scheme) is used to
solve the linear dissipation part. Combinations of these give four FD schemes for solving the
Burgers equation : AB/CN , QUICK/CN , NL/CN , and RL/CN. Analys}'s of the FD-solutions
based on spatial domain and their projection onto wavelet domain have been done. It has been
found that analyzing the solutions in the wavelet domain is very powerful ; it gives a clear

physicsal behavior of the solutions by decomposing the solution onto different length scale .

on comparing both the maximum value of slopes and the

Dissipation is one of the turbulent flow characteristics
that occurs simultaneously at different length scales[1]. To study
this characteristic, we simplify 3-D dynamic equations of fluctuating
velocity components into a well-known 1-D Burgers equation.
Although fictitious, the solution represents an interesting time-
varying multi-scale energy dissipation[2].

While different schemes have been applied to solve the Burgers

equation [3,4], analyses of the solutions have been focused mainly

corresponding time with the values obtained from the exact solution
occurring at a particular point.  Although the approach was
quantitatively reasonable, the physical qualities of the solutions
were obscure.

In this paper, we use finite difference methods to solve the Burgers
equation and propose wavelet technique to analyze the solutions,
The solution method begins with time splitting technique[5] so that

the Burgers equation can be separated into a nonlinear-convection




and a linear-dissipation equations. The nonlinear part is solved by
Adams-Brashford(AB)[4],

Upstream Interpolation for Convective Kinematics (QUICK)[6],

four different techniques; Quadratic
Newton’s and Richtmyer's linearlization (NL and RL)[7] while the
linear dissipation equation is solved solely by Crank-Nicolson(CN)
scheme[7]. A unique solution is obtained from all schemes when
fine enough grid points are used .

Analyses of the solutions by discrete wavelets transform are shown
in section 4 . The wavelet-analysis decomposes the solution into
detailed functions of different length scales. This localizes the
sharp variation both in the wavelets and spatial domains and
allows the solution to be analyzed at each scale independently so
that multi-écale dissipation behaviors of the Burgers solution

become evident .

2. Formulation
The Burgers equation, its initial and boundary conditions
are as follow
‘du du  d'u

—+u—=v——,[x[<1,t>0

ot ox 2°x
u(l,t)=u(-1,t)=0 1)

u(x,0) = —sin( mx)
Here the boundary values are fixed at zero while the sine wave
represents an initial disturbanée. We use time splitting technique
to separate eqn.(1) into a linear and nonlinear partial differential

equations, hence
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Note that combination of eqn.(2) and eqn.(3) results in the original
Burgers equation. The splitting technique allows us to solve the
nonlinear term in the Burgers equation separately. This is done by
solving eqn.(2) for an intermediate solution . Use U as an initial
condition to eqn.(3) and determine the required solution u. We
apply finite difference discretizations to both eqns.(2) and (3) . As
mentioned earlier, four different schemes; AB, QUICK, NL and RL,
are employed to solve eqn.(2) for U then the unconditionally stable
CN scheme is used to determine u, applying U as the initial
condition. All finite difference discretization formulae summarized

in appendix A.

3. The Burgers Solutions
The Burgers solutions for two different values of V(1/47T
and 1/1007T) are shown respectively in Figs. 1 and 2. For higher

viscosity values, the diffusion term dominates and the gradient of

the solution at the origin is weak. Conversely the solution exhibits

a sharp variation when viscosity is small .
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Fig1. : Solution of Burgers equation with viscosity (1/4TT) at various time (

t=0.5/TC, 1/TT, 1.5/TC, 2/TC, 2.5/TC, 3/TT) using AB/CN 1024 grid points
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Fig2. : Solution of Burgers equation with viscosity (1/100TT) at various
time (t=0.5/TC, 1T, 1.5/TC, 2/TU, 2.5/TT, 3/TT) using AB/CN 1024 grid

points

An attempt is made to evaluate the relative merits of each of the

~ four numerical schemes chosen by calculating the maximum value

and the corresponding time( ! . ).For example, it has

Iaul

x| =0 max
|au|ma .

been found that |5 ~~and 7, are 155497 and 0.509

respectively for the AB/CN schemes(Fig.3). We then compare the

results with the values obtained from the exact solution The results

from all schemes are summarized in table 1. We can conclude
Ju

from the values of Igl max that at least 512 grid points have to be

included in the spatial discretizations in order to resolve the sharp

variations. The time t,,,, does not change much from one method




to the other since we are oversampling in time (At = 1/10007T) and

that all values obtained are good approximations .
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Fig3. : l%l J‘_Oagainst time ( viscosity = 1/1007C , AB/CN , 1024 grid

points )

Table 1 : Maximum absolute value of slope at origin and time of it
occurrence for each numerical scheme and comparison with analytical

solution

method grid |% - t:;lax
AB/CN 1024 165.49775 | 0.509529
512 148.68965 | 0.509741
256 127.27110 | 0.510153
QUICK/CN | 1024 1565.67638 | 0.511206
512 150.37589 | 0.510569
256 139.02521 | 0.510251
NR/CN 1024 155.26184 | 0.511206
512 148.33331 | 0.510569
256 126.90212 | 0.510251
RY/CN 1024 154.50588 | 0.509614
512 147.91867 | 0.509932
256 126.87027 | 0.510251
Analytical 152.00516 | 0.51047

It is evident that this maximum slope-time comparison technique,
although giving a quantitative values of the maximum slope and the
corresponding time of occurrence, does not provide any physical
meaning of the solutions. In the next section we will project the

solutions onto the wavelet domain and analyze the wavelet

coefficients instead.

4.Discrete Wavelet Transforms
In this paper we use Daubechies wavelet as 6ur basis
function for analyzing the Burgers solutions. The wavelet is defined
by [8]
W(x) =—c;0(2x) +c,¢(2x —1) —c,¢0(2x - 2)
+cyp(2x = 3) @
where (])(x) is a scaling function. The scaling function is iteratively
calculated from a dilation equation of the form
O(x)=c,0(2x)+c,0(2x—1)+c,0(2x—-2)+
¢;0(2x-3) ©
where a particular set of the coefficients defining Daubechies

wavelet and the scaling function is
¢, =(1+~/3)/4,c,=(3+~3) /4,
¢, =(B=3)/4andc,=—(3-1)/4.
Subject to a few conditions [9], any arbitrary signal f(x) can be
decomposed into an infinite summation of wavelets at different
scales according to the expansion

F) = Dc, p(x=k)+ 2, D, W2 x—k). )

k=—co j=0 k=—oo
When the function f(x) is periodic and is discretized into 2J points
at equally spaced intervals over the period 0Sx<1, there exists a
discrete wavelet transform (DWT) algorithm called Mallat’s pyramid
algorithm that transforms f(x,) into 2J transform coefficients

(ag.aq,az,..., a4 The function f(x) can then be approximated

271 )
from the set of the transformed coefficients, by,

fx)=a,0(x) + a,W(x) + ale(Z‘x) +
WQR'x-1) +.4a, . W20+
21_1+21_1_1W(21_1 X - 21—1 - 1) .

Note that there are 2 transform coefficients at the jth scale.
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Inverse discrete wavelet transform (IDWT) of the coefficients at
each scale returns detailed function of f(x,) at that scale(see Fig.4).
Also, since the wavelet W(x) is compactly supported and localized

at x = 0, fhe wavelet transform - coefficient a2 J ik represent the

strength of the wavelet component of the scale j at the point k.
The capability of scale decomposition and local transformation
behaviors make wavelet transforms well-suited to analyze the time
varying multi-scale dissipation Burgers solution.

In Fig.4, the left column shows reconstruction results of the
detailed functions at different levels. Combination of these functions
at lower levels gives large scale solution to the Burgers’ solution.
At higher levels, the detailed functions are confined locally within
the region where Burgers solution exhibits sharp variation. These
mean that, the ensemble of these detailed functions at higher
levels does not affect large scale solution. Therefore, if details of

the sharp variation are not required, the Burgers solution could be




reconstructed from the combination of only first few levels of
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The dissipation characteristic of the Burgers’ solutions can also be
level 3 level 0,-1,1,2,3 analyzed by considering variations of wavelet norms with time.
! ! Figs.6 and 7 sh Iti-scale plot of ith ti for high
0 J\/\ 0/\ igs.6 an show multi-scale plot of norms with time for hig
-1 -1 (1/4TT) and low (1/1007TT) viscosity respectively. At the largest scale,
0 500 1000 0 500 1000
level 4 level 0 -1,1,2,3,4 the energy decreases continuously from the beginning while at
1 1 other lower scales the energy begins to decrease at later time. The
A
(1) AU (1) effect becomes evident when viscosity is small (see Fig.7).
0 500 1000 0 500 1000 However, to the left of the cross lines in both Figs.6 and 7, energy
level 5 level 0,-1,1,2,3,4,5,6
1 1 of all scales are monotonously dissipated. This means that the
0 t% (o) * magnitude of viscosity does not only affect the rate of dissipation
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Fig.4 : Reconstruction of solution of Burger's equation, the left column
shows detailed functions and the right column shows combination of

detailed function.

Effects of spatial resolution on the accuracy of the finite difference
Burgers solutions from AB/CN, RL/CN and QU/CN methods are
shown in Fig.5. The calculation result from NL/CN method is
RL/CN

method. It is shown in Fig.5 that the norms of wavelet coefficients

omitted from the plot since it has a similar result to

at each scale converges to a unique value when the spatial grid
points are fine enough. The smaller scale solutions, however,
converge slower than large scale solutions. Thus the errors are
from small scale solutions and in this particular problem are
localized at the region where the small scale detailed functions

are located .
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Fig.6 : Wavelet -norms vs time at different length scales (V=1/4TT)
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Fig.7 : Wavelet -norms vs time at different length scales (V=1/100TT)

5.Conclusions

Solving the Burgers equation by four different finite
difference schemes results in a unique solution provided that fine
enough grid points are used. Analyzing the solutions with the
wavelets transform has a major advantage in that the solutions can
be decomposed into detailed functions of different length scales.
This allows spatial and temporal analyses to be done scale by
scale resulting in clear representations of physical effects of
viscosity coefficient on the Burgers solution. Also, the results make
us believe that wavelet transform is a good tools for analyzing
complex flows containing complex multi-scale interactions, e.g.

turbulent flow.
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Appendix A.

Numerical Schemes
Convection part

1. 3rd Adams-Bashforth(AB)

ﬁ_u” 1 23 n\2 E n—-1)2 _5___ n-2
At __4Ax(126"(u) _126-‘(” ) +125-“(” )j

. n__ _.n n
which qui =U U
Note : The first two step begin Euler forward

2. QUICK

u-u" 1 2 2
> —2Ax((u1) (u,)7)

where

u, = —;—(um +u;)— %Ax%urvr

w=u(i-1)
u 2u; +u;_
cury, = -1 =L if u, 20
Ax
u; 2u;  +u
i+2 I2+1 1 , if ul > O
Ax
Note : U,,U, are velocity at wall as interpreted as a linear

interpolation between grid corrected by term proportional to stream
curvature
CUrv,,Curv, are corrected term of stream curvature
3. Crank-Nicolson with Newton Ralphson linearization(NR)

a-u" 1
At _E(
4. Crank-Nicolson with Ritchmyer’s linearization(RY)

8,42 +8,(u")?)

§5x(u"a))+ 0=5(u")?

where @; = u—u"
Diffusion part
Linear diffusion

Crank-Nicolson(CN)
n+l ol 1

2..n 2~
vio u"+6. 1
At 2AX2 ( X X )
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