ﬂ%’uﬂga ﬁaﬂauqmwuﬁw‘fma%ﬂ%ﬁﬂm
[ Qv P-N ¢
USuaIalgnIToatwatIasanuuilawldadng
v Q/ ~ p=|
Wi MeuanuudTea-Heduuuilan
Tala9

Improve Static Fuzzy Logic Controllers with

PINITNGAMSOM B Feedforward Neural Networks: Neural-

Dept. of Mechanical and Industrial Fuzzy Feedforword ContrO"er
Engineering
Rangsit University
Lakhog, Patumtani 12000

= s (3 '3 LA o o = a a g e e
THAILAND msamu(v‘n?asﬂl.wuﬂau'hlmm11’1gnmmZwswnummuqmmyﬂw%aaanwuw?uﬂsvm

o o y . e P .

valdlunmsudilymed gnnanwlidwiaduuazanulivineuluszuunivgy A

annsnlumsSeudunzmaivaalaslidasiinisguavesiiasemuarasuvuilonlutromia

o 'Y “ & Ay o o, < o A a e g

rlimnAsndaudsmnadnlinsasvauasivwa ladu U ldie9y damauguiiauaiinn

° o 2 & ) . ;o

sh luneseunuszuvves iWav-vaimas-au Amudusutasyesnszuasaw uinay

'Y P o & =9 e a o

madguunyszyydsneviuasusasliiiuiumimemsengui lidesardouuudiass
a ny A a a o ' & A e )

nadiamansngysslordagnidlumssamaignuany luiduwdadusazary lutinou

e ~a

anyldluseuumeiandlassnn

The feedforward neural network is incorporated with a static fuzzy logic controller to solve
problems of nonlinearity and uncertainty in control systems. The unsupervised-learning and
"adaptation ability of the feedforward neural network considerably eases the task of selecting
fuzzy parameters that give satisfactory system responses. The proposed controller is tested
with the system of gear-motor-pendulum subjected to loading variation and uncertainty. The
computer simulations show that this model-free approach is of great value in dealing with

nonlinearity and uncertainty found in most physical systems.

1. Introduction

Conventional and modern control techniques such as PD, PID or show very satisfactory performances [10, 12]. This paper

state-space design require that the designers must be able to
express system information and control schemes mathematically.
However, these mathematical models are difficult, or even
impossible in some cases, to be reasonably obtained if the
systems of interest are very complex. In addition to that, even
though the models can be found, these model-based techniques
are not powerful enough to handle nonlinear-uncertain systems
efficiently over wide ranges of operation as evident in control
systems literatures [6, 11]. For this kind of systems, intelligent

control techniques such as neural networks and/or fuzzy logic

presents a possible way to combine advantages over the above
analytical schemes of neural networks and those of fuzzy logic
together.

A static fuzzy logic controller (i.e., fuzzy logic controller without
adaptation algorithms) cannot deal with systems of high degree of
uncertainty and nonlinearity. In fact, one can consider it as a way
to perform the required stafic-nonlinear mappings from input
domains to control actions by using knowledges from experts in the

field of interest. The structure of fuzzy logic control allows local

control of the shape of these mapping in an intuitive manner.




However, establishing an appropriate set of fuzzy rules and the
corresponding membership functions is the task of trial and error.
Normally, if the system is of high degree of nonlinearity in loading
variations, finding the knowledge base (i.e., fuzzy rule base and
membership functions) that gives satisfactory system responses
over a wide range of reference signals is a very difficult task.
Without questions, if SFLCs (Static Fuzzy Logic Controllers) cannot
efficiently handle effects of nonlinearity mentioned above, they
certainly cannot efficiently handle those of uncertainty as well.

One solution to the problem of nonlinearity in loading variations
and of uncertainty is the approach of leaning and/or adaptation.
There exists some fuzzy adaptation schemes that have shown very
successful results [12]. In this paper, however, the approach of
neural networks has been chosen to perform the above task.

As a learning approach, neural networks cannot be used to
control a system unless they have been trained. The training
algorithms such as OL-LMS, LL-LMS or backpropagation use etror
signals to adjust the weights in networks. This means that errors
are supposed to occur in the first place in order to conduct the
adaptation. Once errors occur and the networks are trained, we
hope that these networks can effectively control our system under
the situations in which these errors occur, if this situation is to be
encountered again. In fact, adaptation of the networks to deal with
new situations may deteriorate the knowledge that has been
previously stored unless the capacities of these networks are large
enough.

This fact is unacceptable when we deal with systems of high
degree of uncertainty such as manipulator arms [2]. According to
this reference, if the loading of the arm is changed, a considerable
amount of error occurs before the neural-network based controller
can fully adapt. At this point, the ability to incorporate human
knowledge into control schemes of fuzzy logic comes to the
forefront. That is, our own intuitive knowledge can be used to deal
with this loading variation via fuzzy logic principles while the
adaptation is being conducted.

The principles of FFNN (FeedForward Neural Network) and
static fuzzy logic are combined to construct a neural-fuzzy
feedforward controller. The control configuration has two degrees
of freedom. Therefore, the problem of conflicts in control

specifications (e.g., small rise time and small overshoot) can be

managed easier [6].

2. Control Considerations and the Proposed Model

In this section, we consider the cases in which nonadaptive
control schemes such as static fuzzy logic do not give satisfactory
performances. We begin by considering a nonlinear system

subjected to loading variation and draw some intuitive facts. Then,

we evaluate the limitation and difficulty of using static fuzzy logic
control to handle this kind of systems. After that, the mathematical
model of the system will be derived for the purpose of simulations.

Consider the system of gear-motor-pendulum depicted in the

following figure:

Fig. 1 The system used to test the proposed controller

According to the above figure, our objective is to control the
angle 6 between the negative Y axis and the pendulum over the
range of [0,27T]. For this system, the torque required to rest the
pendulum at any value of © depends on, not only error in the
controlled variable and its derivatives, but also the controlled
variable 0 itself,

From the static fuzzy logic control viewpoint, although one can
adjust the mapping from input domain(s) to output domain(s) by
adjusting fuzzy rule base and the corresponding membership
functions, intrinsic nonlinearity in these systems tremendously
increases the difficulty of the task. In addition to that, for the case
in which more than two input signals are necessary, the static
fuzzy logic approach consumes a considerable amount of memory
and computation time. To overcome the problem of
multidimensional mapping, the approach of learning and/or
adaptation is conéidered as a solution.

In this research, a FFNN takes care of learning and adjusting
feedforward control efforts (i.e., feedforward controller) while a
SFLC is used as the main controller. The overall structure of the
proposed controller will be shown in section 5.

To find the differential equations governing the system, we begin
with derivation of the equation of motion of the pendulum, in
accordance with the following assumptions:

- the gear train has no backlash,
- the pendulum has no mass,
- the shatt, the pendulum and the gear train are rigid.

Consider the schematic diagram of the following mass-pendulum
subsystem.

We select O as the only one generalized coordinate necessary
to describe configurations of this subsystem. The position vector of
the mass m in the Cartesian coordinate system can be expressed

in vector-matrix form as:




r=

[ rsin®
] (1)

| —7cosd
Differentiating the above expression twice gives
. | F-ré?
r=| . . (2)
| r0+2r0

Consequently, the equation of motion in 6 is:
mr?d= —mgrsin@+T (3)

in which T = torque applied to the pendulum

Y

8T mg

Fig. 2 Mass-pendulum subsystem

Next, consider the schematic diagram of the gear-motor

subsystem provided below:

! _f"wn i

Fig. 3 Schematic diagram of the gear-motor subsystem

At the armature, we have the following equation:

di, (1) _Vc(t) Ryi (1) V(1)
a L L, L

a

“

a

in which V(t) = control voltage (Volt)
ig(t) = armature current (Ampare)
Vp(t) = back emf (Volt)

The back emf relates to the angular velocity of the motor as:

de,,
V(1) =K, ot =K, Op (5)

in which Kp = back-emf constant
Om = angular velocity of the motor
The equation relating the motor torque to the armature current
is:
T,(t) = K1, (2) ®

in which K,‘ = torque constant & back-emf constant

Substituting ¥ b.(t) in Equation (5) and #,(?) in Equation (6) into
Equation (4) gives the following equation:

dT,(1) _ KVe(t) R,T,(0) _ KiO,

dt L L, L

a a

The equation of motion of the armature is given by

=—=n ®)

inwhich  Jy, = equivalent moment of inertia of the armature-
gear train-shaft set
By, = viscous damping coefficient
T; = load torque
Substituting & = Ny, 6y, and T'= T; /Ny, in Equation (3) gives:
mr2NQO = —mgrsin(N,0,) + A
Nm
in which Ny = gear ratio
Rearranging gives:
T, = mr*N2Q,, + mgrN,, sin(N,,0,,) ©)
Substitute 7; in Equation (9) into Equation (8) and manipulate
algebraic expressions, we obtain:

de - Tm - mngm Sin(Nmem) - BQO

= (10
272
dt Iy +mr N,
Intuitively, we also have the state equation of:
de,,
—_—= (11)
0 O

Equation (7), (10), and (11) comprise the system of three state
equations (linear and nonlinear) in three state variables which is
necessary and sufficient to describe the states of the system. Note
that a positive armature voltage tends to rotate the pendulum in

CCW or positive direction.

3. Structure of Static Fuzzy Logic Controllers

To present the mechanism of static fuzzy logic control, the
components of this kind of controller are need to be discussed. In
general, a SFLC is composed of a fuzzifier, a fuzzy rule base, a
fuzzy inference engine, and a defuzzifier. These components are
connected as shown in the following figure. We will discuss the

functions of each the components in the following subsections.

Fuzzy control
Rule Base | voltage
————  Fuzzifier . Defuzzifier ——»
€nsCngn
L Fuzzy T
———m  Inference
fuzfzy sets Engine fuzzy sets of output
of inputs and the corresponding

membership values

Fig. 4 Structure of adaptive fuzzy logic controller

3.1 Fuzzifier As do all control schemes, fuzzy logic
based control needs inputs. But in fuzzy logic schemes, these
inputs will be expressed by multivalue logic via set descriptors
such as big, small, and so on. Thus, we need to transform input
signals in the real world which are numerically expressed into a

form which is compatible with this kind of logic. The outputs of a




fuzzifier are linguistic values or membership values of the

numerical inputs in all fuzzy sets in the universe of discourse.

In order to build a fuzzifier, the designer first defines fuzzy
sets and their shapes. These fuzzy sets are quantities that a
human can use in the processes of reasoning and decision-
making. Normally, they are quantities with magnitude and direction
such as negative big or positive small. This is because humans
use these quantities in the kinds of processes mentioned above.
Each multivalue quantity is called a fuzzy set and the degree of
being in this set is called membership value. A numerical input has
its own membership values in all of the fuzzy sets in the universe
of discourse. In other words, the mapping of an input from a
numerical domain to a fuzzy domain is not a one-to-one mapping.
The set that contains all defined fuzzy sets is called the universe of
discourse.

After defining inputs, we define fuzzy sets on which these
inputs will be mapped. The mechanism of fuzzification will be
discussed in accordance with the following figure in which fuzzy

sets A and B are assumed:

degree of membership (1)
fuzzy set B

fuzzy set A

numerical input Z

>

Fig. 5 Membership functions of A and B

The above figure shows that fuzzy set A is defined with a
triangular shape and its membership value is zero everywhere
except from b to a. The membership value of fuzzy set B is not
equal to zero for Z € [0,0L). This reflects the fact that Z fully
belongs to set A at Z=0 and the degree of being in set A will
decrease as Z moves away from 0. If Z moves away from 0 to the
right, the degree of being in set B increases while the degree of
being in set A decreases. For every fuzzy set used in this
research, its degree of membership varies from zero to one.

The kind of fuzzifier that has been chosen is the singleton
fuzzifier. For a crisp point e in Z, a singleton fuzzifier emits unity
as degree of membership of ¢ in a fuzzy set A if e € [b,a]. That
is, the membership value of e is always unity if e is in the range in
which the membership function of A is greater than zero.
Otherwise, the degree of membership of e in A is zero. In fact, the
numerical degree of membership and the corresponding fuzzy set

are the outputs from fuzzifier.

In this research, we choose positive big, positive medium,
positive small, zero, negative small, negative medium, and negative
big as our fuzzy sets. The names of these sets are same for the

inputs and the output but their shapes are different.

3.2 Fuzzy Rule Base The fuzzy rule base is an area of memory
in which the knowledge of how to control a system is stored. The
fuzzy rule base, position, and shape of the membership functions
are deeply interrelated. In fact, it is the shapes and positions of
membership functions that define the meaning of the corresponding
fuzzy sets in the rule base. Intuitively, two SFLCs with the same
fuzzy rule base may or may not behave in the same manner,
depending on the shapes and positions of their membership
functions.

In this research, the error in the pendulum angle ahd the rate
of change of the angular velocity of the pendulum, denoted by €y
and DO respectively, are the two inputs connected to our SFLC.
The rule base used in this research is composed of 49 fuzzy rules.

For convenience, we use numbers to represent the fuzzy sets as:

1 = negative big 2 = negative medium
3 = negative small 4 = zero
5 = positive small 6 = positive medium

7 = positive big

3.3 Fuzzy Inference Engine A fuzzy inference engine performs
the mapping from fuzzy sets of input vectors and their
corresponding membership values to fuzzy sets of output vectors
and their degrees of membership. The mapping will be
implemented by using fuzzy logic implications. There are many
fuzzy logic implications that can be used in this part of a fuzzy
logic controller. The min-operation rule and the product-operation
rule are the two most popular. For the purpose of representation,
we denote the membership values of €4 and D6 by Hgand L 54
respectively. We also assume that the implementation is done on
the fuzzy rule of the following form:

IF eq IS Fipy AND DO Is Fing THEN OUTPUT IS Foy
in which, Finy = the fuzzy set for error in pendulum angle,
Finz = the fuzzy set for change in angular velocity of
the pendulum,
Fou = the fuzzy set for output (i.e., control voltage).

Now that we have defined all of the necessary notation, the
mentioned two fuzzy operations can separately be described in the
following paragraphs.

Using the min-operation rule, the membership value 1 of Fg,,
denoted by [, can be determined as:

How= min{tig(ee), 0 (D)} (12)
Dg

If we use the product-operation rule, L, is given by:




Hou= Holegl pa( D) (13)

According to the above two equations, one can obviously see
that since 1 € [0,1], the product-operation rule has more
sensitivity to changes in input vectors. Due to this fact, the product-
operation rule has been selected so that the controller can rapidly
sense small changes in the input vector. Consequently, the
resulting controller can generate the appropriate control action to
move the system to the desired state before the magnitude of the

error increases.

3.4 Defuzzifier A defuzzifier transforms fuzzy quantities to be
control actions in the real world. In other words, it maps
membership values of the output vector from all fuzzy IF-THEN
rules onto a crisp output vector. There are many mappings that can
be applied, but we will use the center average mapping.

In order to express the output of the defuzzifier in a
mathematical form, we define the center of a fuzzy set as the crisp
value of a linguistic variable (a linguistic variable can be expressed
either numerically or verbally) that corresponds to the point at
which the membership function of the fuzzy set of interest is a
maximum. If one considers Fig. 5, one will find that the centers of
fuzzy sets A and B are f'and a respectively.

Using the center average defuzzifier, the output of our fuzzy

logic controller can be determined from:

M

Z;i( Ho(eg)* 11,,(DO));

Ve-ruzzy = 53¢ (14)

D ((ep)* 15D O));

i=1

in which, V; = center of membership functions for fuzzy
sets of the control voltage from the i'h rule
Ve _ruzzy = output voltage from defuzzifier,
M = number of fuzzy IF-THEN rules in fuzzy rule

base = 49.

4. FFNN and Learning Algorithms

Although there are several kinds of neural networks used
nowadays, this research incorporates the network of feedforward .
One of the obvious reasons is that this kind of neural networks has
shown satisfactory performances in the field of control. In addition
to that, the backpropagation Iea(ning algorithm can be used to train
the above mentioned networks. The backpropagation algorithm is
derived from very‘ familiar laws in differential calculus, the chain
rule of differentiation and the principles of partial differentiation.
Thus, the learning mechanism of the network is rigorous and
generally, is easy to be understood by most engineers. This fact

enhances the possibility to develop better algorithms in the future.

4.1 Neuron In FFNN, layers of neurons are arranged such that
every neuron in any two consecutive layers is fully interconnected

by forward paths. The following figure shows the structure of a

neuron.
X
INw; I
%
Xy 22 e < »2
w3
X3 3

Fig. 6 A neuron

The ellipse in Fig. 6 represents a neuron. Inputs and outputs
paths of the neuron are represented by arrows. There is no
restriction about the dimensions of input and output vectors. In this
research, however, the dimension of inputs of our FFNN is same
as that of SFLC. Each line of inputs X} has the corresponding
weight I%. If we denote the output by 1y, the relation between the

input vector, the weight vector, and the output is given by:

Ya = F(s)= FQ (X))

i=1

(15)

in which F = activation function.
The choice of F' depends on the range of the required output.

Normally, F takes one of the following:

1) F =

l+e”*
2) F = atanh(s)
3) F=as

in which a = constant to be chosen.

As a matter of fact, there are some discontinuous functions that
have widely been used (e.g., F =sgn(s)). We do not use this kind
of functions because our training algorithm is based on the
principle of differentiation which requires the continuity of functions,
The choice of 1) or 2) makes the magnitude of output signals

controllable.

4.2 Structure of Feedforward Neural Network As the name
implies, this kind of neuron-connected networks has only
feedforward paths. A FFNN can be built by connecting neurons
which are represented by circles in the following manner.

The network is composed of layers of neurons. The layer
exposed to the inputs‘ is called the input layer. The output layer is
the one that emits outputs of the networks and the layers between
the input layer and the output layer are called hidden layers. There
is no restriction about the number of neurons in each layer and the
number of hidden layers.

In the input layer, experts in the field usually let the outputs of a

neuron equal to its input (i.e., F(s)=1). As one shall see in the




derivation of the training algorithm, this tradition is not necessary
although it is what most people do. The output signal of every
neuron in hidden layers and the output layer can be computed as
in Equation (15).

inputs

last hidden
layer

first hidden
layer

output layer

input layer
Fig. 7 Structure of feedforward neural network

4.3 Backpropagation Algorithm The beauty of the
backpropagation algorithm is that it can clearly be derived from the
chain rule of differentiation. Therefore, the mechanism of the
algorithm can be realized in every step.

In the algorithm, the error signal of a neuron is fed from its
output back to the body of the neuron itself. Normally, this
feedback error signal is the square of the actual error. The
following is the commonly used relation between the feedback error
signal and the actual error:

E =(d-y)* =er?
d = the desired output

(16)
in which
¥ = actual output
E = feedback error signal
err = actual error
The purpose of the learning is to adjust the weights in the
network such that £ is minimized. Therefore, we need to know the
rate of changes of E with respect to the changes of all of the
weights in the network so that we can determine the direction of

weight changes that makes E smaller. Thus, in the differentiation

point of view, we need to find If we apply the chain rule of

i

differentiation, we may write:

E__EH° &° -
é’W,-HLO a'yo a° MHLO
in which yo = output of the neuron in the output layer
SOE input of the activation function of the neuron

in the output layer
VVZ-H"O = the weight between the i(h neuron in the
last hidden layer and the output layer
According to Equation (17), one can differentiate Equation (16)

as:

T
E _ 2E (9}70(5,0) awHLO yHL)
MHLO &o VViHLO

or

E o”Fo(so)y H,

= =6 ;

=" (18

in which y“L = output vector of neuron in the last hidden layer

w HL0" = the weight vector that corresponds to yHL

Equation (18) gives the rate of change of E with respect to each
of all of the weights between the output layer and the last hidden
layer.

To find the rate of change of E with respect to the weights
between the last hidden layer and the layer before it, we use the
chain rule in the same fashion as the previous.

E___E H° &° 9" &
ﬁl/Vj{:IL—lHL @,0 a&° @)II{L &giHL Oﬂinf:ﬁqHL

(19)

H, n
in which VV]-?H L= the weight between the j‘ neuron in the

hidden layer L-1 and the ith neuron in the

last hidden layer (i.e., layer L)
Hy,

Yi

H h
S; L = input of the activation function of the il

output of the ith neuron in the hidden layer

]

neuron in the last hidden layer

According to Equation (19), we can write:

FH(shry

E FO(?) mo SH,
oW 2y =2k &° Wit afh vt @0
Ji i

At the time of writing this section, simulations of the proposed
control system have shown that the network with only one hidden
layer is capable of giving satisfactory system responses. Therefore,
further derivations will not be discussed here. Nevertheless, one
can derive the rate of change of E with respect to any weights
between any pair of neurons in any two consecutive layers in the
manner shown above.

For the case in which the network has one hidden layer and the
activation function of all neurons in the input layer is F(s)=s,

Equation (20) becomes:

0,.0 Hp o H
— = T e ),
o”Wﬁ L & o8

in which XJ = input of the jth neuron in the input layer
IN- h
W}i A= weight between the jt neuron in the input

layer and the i’h neuron in the hidden layer
The following expressions are the results of differentiating F(s)

with respect to s:

Nif F=

—s '

= then % = aF(s)(1- F(s))

2) If F = atanh(s), then %— = a(1—(F(5))*)




3) If F=as,then E=a
&

4.4 Learning Law  We apply the delta rule of the following

form:
K+ _ gk 23
W, = W' —pu % 21)
M,
in which M= step size of change in W, from the present

state to the next state

According to the principle of steepest descent, an inappropriate
size of change in W; (i.e., 1) may lead to problems. If 4 is too
small, the number of steps that the above law takes to reach the
local minimum of E will be considerable and thus the learning rate
is slow. Inversely, if /4 is too large, the above algorithm will not be
able to find the local minimum of E. Note that the choices of initial
values of W, lead to different final values of E.

It is obvious that the algorithm may or may not give the value of
W; that corresponds to the globally minimum of £ over domain of

W;. This depends on the initial value of W; as discussed.

Intuitively, since the algorithm minimizes E 2, one can say that the
magnitude of the actual error is minimized. It is possible that one
will vary 4 from step to step to increase the rate of convergence by
considering the magnitude of change in Wj of the previous steps.
For more information about this subject, see prediction and
extrapolation techniques in books dedicated to numerical

computation.

5. Structure of Neural-Fuzzy Feedforward Controtler

This section illustrates the structure of the proposed controller
and some ideas that stand behind the design. We begin with the
structure of the controller. After that, the choice of error signal fed
to the learning algorithm will be discussed. v

It is known that using one-degree-of-freedom control schemes
(i.e., there is only one controller in the system) leads to the
relatively limited performance criferia (e.g., a system with small rise
time usually has an excessive amount of overshoot). Because of
the above fact, the configuration proposed is of feedforward with
two degrees of freedom. Fig. 8 depicted the overall structure of the
controller.

Only control action from SFLC is not enough to force the system
such that the system responses are satisfactory. This control
action, however, can be easily managed by defining fuzzy rule
base and the corresponding membership functions. These
definitions are, although imprecise, admissible because they are
derived form known facts. The fact that fuzzy parameters can be

loosely defined to some degree makes defining fuzzy parameters a

lot easier. Under this configuration, SFLC-with no adaptation, emits

the main control action while FFNN learns and adapts itself for the

appropriate feedforward control action.

r4
| yq{ et D
desired Veeomas actual
angle + angle
SFLC System | @
+
VC-FUZZV

Fig. 8 The overall control structure

As one can see from Fig. 8, the output of the fuzzy controller
(i.e., main control voltage) is used as the error signal fed back to
FFNN. The backpropagation algorithm will adapt the network such
that the output of SFLC is minimized. Therefore, one can say that
FFNN is trained to minimize the error signal of & as well.

It is important to look back to the time the backpropagation
algorithm has been derived. At that time, the error was defined to
be equal to the difference between the desired output and the
actual output of the network. This implies that the dimension- of the

error and the output signal of FFNN must be the same.

6. Simulation Results

In this part, we investigate and compare the responses of the
gear-motor-pendulum system for the cases in which the SFLC and
FFNN are on the line to those when FFNN is removed. In other
words, we focus on the effects of the adaptation and learning
ability of FFNN to the system responses.

The following simulations are based on the fourth-order Runge-
Kutta Method with time step of 0.000025 second.

6.1 Fuzzy Parameters in SFLC The fuzzy rule base will be

shown in accordance with the notations given in section 3.2 as

below:
Rule  Base DO

1 2 3 4 5 6 7

1 4 3 2 2 1 1 1

2 6 4 3 2 2 1 1

3 6 6 4 3 2 1 1

e 4 | 7|65 |als|2]1

5 7 7 6 5 4 3 3

6 7 7 6 6 5 4 3

7 7 7 7 6 6 5 4

Table 1 Fuzzy rule base

The membership functions of the fuzzy sets of each of the two
inputs in the fuzzy rule base are defined in accordance with the

following figures and tables.




‘\

l(l k2 k3 kl k2 kﬁ kl kZ k3

Fig. 9 Input membership functions

Fuzzy Set 1 2 3 4 5 6 7
kq(rad) -0t | 03} -01|-005| 0.0 | 0.05| 0.1
ko(rad) -0.3 | 0.1 [-0.06| 0.0 | 0.05 | 0.1 0.3
ks(rad) -0.1 |-0.05| 0.0 | 0.05 | 0.1 0.3 o

Table 2 Data of membership functions of e

Fuzzy Set 1 2 3 4 5 6 7
kq(rad) -0 | 06| -041})-02] 00} 02| 04
ko(rad) -06 | 04| -02)] 001} 02} 04 | 06
Kka(rad) 04 | -02] 00| 02| 041 06 (0

Table 3 Data of membership functions of Dé

The centers of membership functions of the fuzzy sets of the

control voltage are shown in the following table.

Fuzzy Sets 1 2 3 4 5 6 7

Centers of
Membership -12] 95 | -7 0 7 95 | 12

Functions (Volts)

Table 4 Centers of membership functions of fuzzy sets in output

6.2 Information about FFNN The proposed FFNN has one
hidden layer with 29 neurons, two input nodes and one output
node. The initial values of all of the weights in the networks are
zeroes. The step size of changes in weights (lt) is equal to 0.005
and the activation function is F(s) = 8tanh(s).

6.3 Physical Properties of the Gear-Motor-Pendulum System
The physical properties of the system are realistically taken1. They

are shown in the following table.

m (kg) 0.6
I (kg.m’) 0.005
By (N.m.s) 0.00009
g (mfs’) . 9.81
Ly (Henry) 0.00001
K (N.m/Ampare) 0.088
R4(0hm) 1
Nm 0.1
r(m) 0.3

Table 5 Physical properties of the gear-motor-pendulum system

6.4 Ability of the Proposed Controller to Handle effects of
Nonlinearity The objective of the following simulation is to
investigate and compare the performance of the proposed
controller to that of SFLC over wide range of step command
signal. Initially, the system is launched from the initial condition of
© = 0.5 radian. Then, the command signal is changed during t €

[0,20] second in accordance with the following table.

Time (second) 0 5 9 13
Command (radian) 1 0.7 1.1 0.45

Table 6 Changes in command signal

The result of simulation when only SFLC is in the line is shown

below:
DEPARTMENT OF MECHANICAL ENGINEERING-RANGSIT UNIUVERSITY
TRAINING FNN. USING BACKPROPAGATION ALGORITHM
0(Rad) Fuzzy
1.20009
1.87143 /——\l
0.94286
8,81429 [ \ / x
8.68571
0.55714 \
8.42857
0.38880
8.80088 Time(Sec) 2008890
1=N&F training phase | 2=N&F trained phase ! 3=Fuzzy ! E=Exit

Fig. 10 Response of the system with only SFLC

The response of the system with both SFLC and FFNN is as

below:

DEPARTMENT OF MECHANICAL ENGINEERING-RANGSIT UNIVERSITY

TRAINING FNN. USING BACKPROPAGATION ALGORITHM

0(Rad) TRAINING PHASE, NEURAL&FUZZY
1.28806
1.87143 /' ‘

0.94286

8.81429 \ / \
8.68571

8.55714 \

8.42857

a.36880
8.00008 Tine(Sec) 28 .00008

1=N&F training phase ! 2eNAF trained phase | 3=Fuzzy ! E=Exit

Fig. 11 Response of system with both SFLC and FFNN

According to the above two simulations, FFNN can help SFLC to
force the system such that the steady-state error becomes zero
over wide range of nonlinear-loading variation. It is obvious that the
unsupervised-learning ability of the proposed controller performs

well without necessity to adjust fuzzy parameters to some degree.

! Properties of motor are taken from data sheets of motor model S9M4H,
manufactured by PMI Motors, U.S.A..




6.5 Ability of the Proposed Controller to Handle Effects of
Uncertainty To test the ability of the proposed controller in dealing
with uncertainty, we consider the situation in which the motor
constant Kj and the mass m are changed from 0.088 N.m/Ampare
and 0.6 kg to 0.03 N.m/Ampare and 0.8 kg respectively. We do not
adjust any control parameters to take into account the above
imposed uncertainty so that we can see how well the proposed
controller internally adapts and performs in this kind of situations.

The simulation of the system with only SFLC in the line is as

shown below:
DEPRRTMENT OF MECHANICAL ENGINEERING-RANGSIT UNIVERSITY
TRAINING FNN, USING BACKPROPAGATION ALGORITHM
©(Rad) Fuzzy
1.20008
1.87143 —
0.94286 1~
8.81429 / \
8.68571 L R—
8.55714 ‘
8.42857 \/—————-——-——
8.30008
8.80003 Time(Sec) 2P .006088
1=N&F training phase ! 2=N&F trained phase | 3=Fuzzy | E=Exit

Fig. 12 Response of the system subjected to uncertainty with only
SFLC

The simulation of the neural-fuzzy feedforward control system is

as shown below.

DEPARTMENT OF MECHANICAL ENGINEERING-RAMGSIT UNIVERSITY

TRAINING FNN. USING BACKPROPAGATION ALGORITHM
0(Rad) TRAINING PHASE, NEURAL&FUZZY
1.20008

1.87143

[ 1

[ ] ]
\

Time(Sec)

8.94286
8.81429

8.68571
8.55714

0.42857

9.30600

0.80088 20.90008

i E=Exit

1=N&F training phase ! 2=N&F trained phase ! 3=Fuzzy

Fig. 13 Response of the proposed control system subjected to

uncertainty

In the first simulation of section 6.5, one can see that the
response of the system imposed with uncertainty has more steady-
state error and overshoot than those without uncertainty. However,
according to Fig. 13, considerable effects of uncertainty to the
system response can be satisfactorily handled by the proposed
neural-fuzzy feedforword controller.

7. Conclusions

In this paper, the natures of analytical control techniques are
considered in the first place. It was pointed out that these well-

known techniques, although mathematically derivable, give

unsatisfactory results when applied to nonlinear-uncertain systems.

The principles of Static Fuzzy Logic Controller (SFLC) are
presented. in these principle, the designers cannot avoid difficulties
in choosing fuzzy parameters such that the system responses are
satisfactory. Because of this fact, the principle of FeedForward
Neural Network (FFNN) is proposed with the associated
backpropagation algorithm and the delta learning rule. The FFNN is
arranged to work with SFLC in the form of feedforward controller
having two degrees of freedom. This hybrid controller combines
advantages of knowledge-based scheme of SFLC to that of
learning/adaptation schemes of FFNN.

The proposed neural-fuzzy feedforward controller is
tested without human supervision with a gear-motor-pendulum
system subjected to nonlinearity in  loading variation and
uncertainty. The simulations show that the proposed controller is
not only capable of handling effects of the above kind of
nonlinearity but it is powerful enough to deal with that of

uncertainty as well.

Reference

1 Burden, R. L., and Faires, J. D., 1993, “Numerical Analysis,” Fifth Edition,
Boston, MA: PWS Publishing.

2 Ciliz, M. K., and Isik, C., 1990, “Trajectory Following Control of Robotic
Manipulators Using Neural Networks, " Proc. IEEE Int. Conf. Intelligent Control
Systems, pp. 536-540.

3 Haug, E. J., 1992, “Intermediate Dynamics,” Englewood Cliffs, NJ: Prentice
Hall.

4 Hisao Ishibuchi, Ryosuke Fujioka, and Hideo Tanaka, 1993, “Neural
Networks That Learns from  Fuzzy
Fuzzy Systems, vol. 1, no. 2, pp.85-97.

5 Kuschewski, J. G., Hui, S, and Zak, 8. H., 1993, “Application of

If-Then Rules,” IEEE Transactions on

Feedforward Neural Networks to Dynamical System Identification and Control,”
IEEE Trans on Control Systems and Technology, Vol. 1, no. 1, pp. 37-49.

6 Kuo, B. C., 1995, “Aufomatic Control Systems,” Seventh Edition, Englewood
Cliffs, NJ: Prentice Hall.

7 Li, Y. F, and Lau, C. C., 1989, “Development of Fuzzy Algorithms for
Servo Systems,” [EEE Controf System Magazine, Vol. 8, number 3, pp. 65-71.

8 Michael Chester, 1993, “Neural Networks a Tutorial,” Englewood Cliffs,
NJ: Prentice Hall.

9 Nguyen, D. H., and Widrow, B., 1990, “Neural Networks for Self-Learning
Control Systems," IEEE Control Systems Magazine, Vol. 10, No. 3, pp.18-23.

10 Page, G. F., Gomm, J. B, andWilliams, D., 1993, “Application of Neural
Networks to Modelling and Control,” London: Chapman & Hall.

11 Raven, F. H., 1987, “Automatic Control Engineering," Fourth Edition,
Singapore: McGraw-Hill Inc..

12 Wang, L. X., 1994, “Adaptive Fuzzy Systems and Control Design and
Stability Analysis,” Englewood Cliffs, NJ: Prentice Hall.

13 Widrow, B., and Lehr, M. A,, 1990, “30 Years of Adaptive Neural Networks:
Perceptron, Madaline, and Backpropagation,” Proc. of IEEE, Vol. 78, No. 9,

pp.1415-1442.




