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Abstract 
This paper studies the motion of a body placed on a flat surface which is rotating at a constant speed.  

Because of the difference in velocity at the contact point, slipping will initially occur.  There are two possibilities for 
the subsequent motion: either the body stops moving with respect to the plate or it keeps on slipping and moves out 
of the surface.  Equations of motion for the body are written down using a polar coordinate system and solved 
numerically for various initial conditions of rotating speed and the initial radial distance.  It is found that a clear 
boundary can be established separating the region of initial conditions for which the body will stop relative to the 
plate from that for which it will not.  The initial conditions are represented by the rotating speed ω and a parameter 

0/kG g r , where 
k is the kinetic coefficient of friction, g the gravitational constant, and r0 the initial radial 

distance.  
Keywords: rotating plate, relative velocity, slipping.  

1. Introduction 

 Rotating surfaces are common both in everyday 
lives and in industries, e.g. turntables, grinding 
surfaces, merry-go-rounds, etc.  The problem of a 
body sitting on a flat rotating surface is considered 
either as an example or exercise in most basic 
Engineering Mechanics books [1,2].  The problem is 
usually to find a critical rotating speed such that a 
particle sitting on the surface with a given coefficient 
of friction will not slip.  The question of how the body 
comes to be at that particular place has rarely been 
considered.  Of course, one can imagine a mechanism 
to hold the body in place while the plate increases its 
speed or to match the speed of the plate before placing 
the body on it.  It is more interesting to ask if this is 
possible without any external mechanism. 
 Vongsarnpigoon and Sratong-on [3] considered 
the problem of a plate starting from rest with a body 
on it and asked how the plate could be brought up to 
the critical speed of rotation without the body slipping.  
It was found that there were several ways of achieving 
the critical speed.  For example, the plate could start 
out at a maximum allowable acceleration and 
decreased its acceleration linearly until it became zero 
at the critical speed.  Some scheme of motion is shown 
to be impossible since the body would always slip 
before the plate reaching critical speed, e.g. a motion 
with constant acceleration no matter how small. 
 A similar and related problem is to consider a flat 
plate already rotating at a constant angular speed with 
a body suddenly placed on top of it.  This is the subject 
of this paper. 
 

2. Basic equations 

 Consider a body with mass m being place on a flat 
plate which is rotating at a constant angular velocity ω 
at a distance r0 from the center of the plate.  Using a 

cylindrical polar coordinate system (r, θ) and treating 
the body as a particle, the velocity and acceleration 
vectors of the particle at any time is given by 
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where re


 and e


 are the base vectors along the r- and 

θ-direction, respe 
ctively, and the superposed dot denote a derivative 
with respect to time t.   
 The equations of motion for the body are, 
therefore, given by 
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where m is the mass of the body, fr and fθ are, 
respectively, the friction force in the r- and θ-
directions.  Since the surface is flat, the normal 
reaction from the surface and the maximum friction 
force are 

max
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where s is the static coefficient of friction between 

the body and the surface, and g is the gravitational 
constant. Before going further, it should be noted here 
that in many basic Engineering Mechanics textbook 

[1,2], Eq. (2) lead to a critical angular velocity cr  at 

which the body can remain on the plate without 
slipping. If the body is stationary with respect to the 
surface, the relative velocity becomes zero and 

   , Eq. (2) reduce to 

(1) 

(2) 

(3) 
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With maxr sf f mg  , the angular velocity 

becomes the critical angular velocity cr , then  
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where G1 is a parameter identical to the parameter c2 in 
[3]. 
 When a body is initially placed on the spinning 
plate at a radial distance r0, its real velocity is zero but 
the relative velocity of the body with respect to the 
plate is nonzero; hence, slipping occurs.  The force 
acting on the body in the horizontal direction is the 
kinetic friction force.  The velocity of the rotating plate 
at any point r from the center is given by 
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With Eqs. (1) and (6), the relative velocity of the body 
with respect to the plate can be written as 
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Since the friction force is always in the opposite 
direction to the relative velocity, it has the form 
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where k  is the kinetic coefficient of friction. The 

equations of motion (2) become 
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 Eq. (9) above is a system of nonlinear ordinary 
differential equations which cannot be solved 
analytically and a numerical method is needed.  Eq. (9) 
describes the motion of the body on the surface in 
terms of its position r and θ as long as slipping occurs, 
i.e. the body is moving with respect to the surface.  In 
some cases, the body will stop with respect to the 
surface, and the relative velocity in Eq. (7) vanishes. 
 

3. Simulations 

 For the purpose of numerical calculation, define a 
non-dimensional radial variable R and a new variable 
Ω as follows: 
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Then, Eq. (9) can be rewritten as 
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where G is a parameter defined by 
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It should be noted that G is a combination of the 
physical characteristics of the contact surfaces and the 
initial radial distance r0 and has the dimension of s-2.  
Also, the initial conditions of Eq. (11) are given by 
  

(0) 1 , (0) 0 .R     
 The numerical calculations are carried out using 
4th-order Runge-Katta method [4] run on MATLAB.   
With a given value of ω, a starting value of G is 
chosen.  The routine for solving Eq. (11) is then run 
and the relative radial velocity and the relative angular 
velocity of the body with respect to the plate are 
recorded.  A typical result in which the body stops 
with respect to the plate is shown in Fig. 1.  In this 
case, the angular velocity of the plate is 20  rad/s, 
and the initial relative angular velocity is therefore 
equal to 20 while the relative radial velocity is 0.  As 
time progresses, both relative velocities change and 
reach 0 simultaneously.  This means the body stops 
moving with respect to the plate from then on.    
 

 
Fig. 1 Relative velocity in the r- and θ-directions for a 

case which the relative motion stops 
 

 In some cases, the relative radial and angular 
velocities do not approach zero which means the body 
continues to move with respect to the plate.  A typical 
result of a non-stopping body is shown in Fig. 2.  In 
this case, the angular velocity of the plate is 50 rad/s.  
The relative angular velocity first decreases but then 
reverses direction and increases continuously while the 
relative radial velocity decreases monotonically.  It is 
clear that the particle cannot stop relative to the plate. 
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Fig. 2 Relative velocity in the r- and θ-directions for a 

case which the relative motion does not stop 
 
 For a given ω, it is found that there is a limiting 
value of G, i.e. a value of G below which the body 
would not stop.  The plot of limiting values of G 
versus ω is shown in Fig. 3.  As can be seen, the 
limiting values of G form a smooth boundary.  Starting 
with a point in the region to the left of the boundary, 
i.e. a starting value of G at a given ω, the body will 
initially slip but will eventually stop with respect to the 
plate.  On the other hand, with a starting point in the  

 
Fig. 3 Limiting G versus the angular velocity of the 

rotating plate 
 
region to the right of the boundary, the body will 
eventually move out of the plate.   
 Also shown in Fig. 3 is a curve representing the 

relationship between G1 and cr in Eq. (5).  As can be 

seen, the boundary of limiting G is well to the left of 
the critical angular velocity.  This means if a body is 
place on a rotating plate, it can never reach the 
position of critical angular velocity as defined in Eq. 
(5). 
 

4. Conclusion 

 The problem of a body placed on a plate rotating 
with a constant angular velocity is investigated.  It is 
found that the body may or may not stop with respect 
to the plate depending on the relative value of the 

angular velocity of the plate ω to the parameter G, 
which depends on the coefficient of friction, the 
gravitational constant and the initial distance from the 
center as defined in Eq. (12).  The two regions are well 
separated by a smooth curve which is determined 
numerically.  As expected, the result implies that at a 
given angular velocity of the rotating plate, a high 
value of G, which implies high coefficient of friction 
or small initial radial distance, will ensure that the 
body would stop with respect to the plate.  Conversely, 
a low value of G resulting from a smooth surface or 
large initial radial distance would tend to propel the 
body out of the plate.  Attempts to verify the results 
experimentally will be done in the near future. 
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