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Abstract 
In this paper, mathematical models are developed in order to analyze piezoelectrically-induced snap-through 

behaviors of bistable smart beams with different geometric configurations. The model delineates a beam bonded 
with a segmented piezoelectric material in the initial flat configuration. The smart beam is buckled into two stable 
shapes by edge shortening compression. A sudden change in transverse deflection during snap-through action of the 
buckled beam is stimulated by an extension of piezoelectric patch under electrical activation. The minimum 
potential energy principle associated with the Ritz and Lagrange multiplier method is utilized to predict shapes of 
the smart beam and the snapping-through critical voltage. Bordered Hessian is calculated to determine the stability 
of the shapes obtained. Size of the piezoelectric actuator is varied to search for the minimum critical electrical field. 
Experiments and finite element analyses are conducted to corroborate the computational results obtained from the 
model of the simply-supported smart beam. Comparisons among the different approaches reveal very good 
agreement in both mid-span displacements and snap-through voltages. Interestingly the lowest critical electrical 
field occurs when the piezoelectric patch covers around fifty to sixty percent of the beam platform area for both 
simply and clamped supported configurations. This model can give a very useful perspective in design of compliant 
structures with voltage control such as micro-switches, MEMS and other bistable beam mechanisms. 
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1. Introduction 

 Compliant mechanisms are mechanisms that 
consist of one or several flexible structural members. 
Through elastic body deformation, these members are 
utilized to transfer an input force or displacement. 
They have advantages over rigid-body or classical 
mechanisms for less relative moving parts, lower wear 
rate, lower cost, and better energy performance.  
 One example of compliant mechanisms is bistable 
buckled beams, which are commonly constructed in 
miniaturized technology such as micro-switches. This 
structure can transform between its two states of stable 
positions with some degree of disturbance tolerance. 
The action of shape changing between the two stable 
states are called snap-through buckling, which is a 
dynamic event. A snap-through buckling can generally 
be triggered by a sufficient amount of transverse force 
or bending moment. The resulting movement between 
the two stable positions provides a large induced 
displacement with relatively low magnitude of 
mechanical actuation.  
 Studies of bistable buckled beams have been 
mostly done by performing mathematical analysis to 
determine the critical lateral loads that trigger a snap-
through buckling. The work of Cazottes et al (2009) 
[1] presented a model of a beam under the assumption 
of inextensible clamped condition. Numerical analysis 
was conducted along with the experiments to obtain 
the lateral force versus displacement diagram. The 
extensible beams assumption on the reduced elastica 

method were utilized by Camescasse et al. (2013) [2] 
to analyze simple buckled beams and their stability. 
The validated experiments performed by the same 
group were done later in 2014 [3]. Theses 
investigations provide conceptual guidelines for 
predicting the transverse load that activates snap-
through buckling in different configurations. However, 
for applications in a limited enclosed space, using a 
smart material to induce snap-through action rather 
than applying a direct mechanical load is a better 
choice for engineering design. A beam bonded or 
embedded with a smart material i.e. piezoelectric 
material is dubbed as smart beam. 
 Deformation and motion of a bistable smart beam 
can be induced by elongation or contraction in the 
piezoelectric material under the application of 
electrical field. The configuration change between the 
stable states in this way is triggered by piezoelectricity, 
thus so-called piezoelectrically-induced snap-through 
buckling. Analogous to the critical force, research in 
bistable smart beam was focused on the critical voltage 
to trigger snap-through buckling (or snap-through 
voltage) and stability of corresponding deformed 
shapes. Maurini et al (2007) [4] considered a simple 
buckled beam with four piezoelectric actuators, where 
each two were attached on top and bottom surfaces of 
the beam substrate. The actuators on those surfaces 
filled the beam in full length. The extensible elastica 
method was assumed in order to study effective 
actuation parameters with stability analysis. 
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Glannopoulos et al (2007) [5] investigated a simple 
buckled beam with two full-length piezoelectric 
actuators; one was attached on the top and the other 
under the bottom of substrate. The energy method with 
inextensible constraint was employed to calculate 
snap-through voltages vs. end-displacements. Cazottes 
et al (2008) [6] did experiments using Macro Fiber 
Composite (MFC) as an extensional piezoelectric 
actuator attached on a clamped buckled beam and 
tested for snap-through voltages for various actuator’s 
positions.  
 From the literature reviewed above, a majority of 
the research has paid attention to smart beams, which 
are midplane-symmetrically bonded with two full-
length piezoelectric materials. There has been very 
little research reported on deformation characteristics 
of a smart beam with a segmented piezoelectric 
actuator attached on only one side, their influence on 
snap-through phenomenon and the relation of the 
critical electric field with the piezoelectric patch length. 
Consequently, in this study a buckled beam bonded 
with a segmented piezoelectric actuator is investigated. 
Simple-simple and clamped-clamped (encastré) 
support conditions are considered. The mathematical 
models are formulated from the energy method of 
inextensible beams. Deformed shapes and their 
associated stability for various end shortening 
distances and electric field strength are analyzed. 
Snap-through voltage for each case is computationally 
evaluated. Experiments are also conducted to validate 
the results obtained from the energy model developed. 
Optimum length of the segmented piezoelectric 
material that provide minimum snap-through voltage is 
determined for future applications.  
 

2. Bistable smart beam  

2.1 Beam components  
 The smart beam considered consists of a metal 
strip made of zinc-coated steel and a segmented 
piezoelectric patch bonded on a strip’s planform 
surface at the central location as shown in Fig. 1. The 
metal strip acts as passive elastic substrate, whereas 
the piezoelectric patch functions as an actuator.  

 
 

Fig. 1 The smart beam: (a) simply supported beam,  
(b) clamp-clamp supported beam.  

2.2 Snap-through mechanism 
 The schematic sketching of snap-through buckling 
is illustrated in Fig. 2. Initially, the undeformed smart 
beam is compressed on the shorter edges until it is 
buckled into the fundamental buckling shape. 
Subjected to a specified end displacement, the buckled 
shape in Fig. 2 is considered to be in the 1st stable 
equilibrium position (configuration 1). When the 
piezoelectric material is electrically actuated with 
quasi-static positive voltage, the material is gradually 
expanded and an equivalent moment is induced to 
deform the beam (configuration 2). At a critical 
voltage, the beam becomes unstable (configuration 3) 
so it is displaced suddenly and snapped-though to the 
2nd stable position (configuration 4).  

3. Mathematical modeling 

3.1 Smart beam geometry 
 The smart beam is assumed to be a slender thin 
walled structure so that the model can be treated as one 
dimensional and thus all kinematic variables are 
functions of the coordinate x as illustrated in Fig. 3. 
Also, it is hypothesized that the projected length of 
piezoelectric actuator attached on the buckled beam is 
approximately the same as the initial length 0s  
although projected length of the substrate L is 
considered to be slightly smaller than its original 
dimension L0 by the end displacement 0d or 

0 0L L d  . 

 Cross section of the smart beam at the central 
location can be seen as a laminate as shown in Fig. 4. 
The 1st and 2nd layers are the zinc coated steel substrate 
and piezoelectric material layer, respectively. In the 
figure kh denotes thickness. Subscript k represents that 

the corresponding quantity belongs to the thk layer. 

 
Fig. 2 Deformations of a bistable buckled beam 

 
Fig. 3 dimensions of smart beams: (a) pre-compressed 

beam, (b) buckled beam 
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Fig. 4 Layers of a smart beam 

3.2 Energy equations of buckled smart beam  
  
 The strain energy of each layer kU  can be written 

in Eq. (1). Subscript k = 1 is denoted for zing coated 
steel layer, while k = 2 is for piezoelectric layer. 
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In the above, kE  is the extensional modulus in the x 

direction. x  is the total strain that obeys the 

Kirchhoff’s hypothesis of a laminated beam [10] as 
expressed in Eq. (2). V  is free piezoelectric strain as 

shown in Eq. (3) [7].  
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where w denotes the beam deflection. 11d is the 

piezoelectric constant of the actuator. V is the applied 
voltage. p is the gap length between positive and 

negative electrodes. 
 The smart beam is assumed to be inextensionable 
during the deformation, so the constraint is derived 
from Eq. (4) and written compactly in Eq. (5).  
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 The total potential energy , which is the 

combination of strain energy kU  in Eq. (1) and the 

constraint g in Eq. (5) can be written as  
2
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In Eq. (6),   is Lagrange’s multiplier that represents 
the constraint force per unit area. In this formulation if 
the value of 0d  is considered to be positive, the 

positive Lagrange’s multiplier signifies the 
compressive constraint force.  
  

3.3 Ritz method  
 The solutions for the deflection w(x) of the 
buckled smart beam can be approximated by using the 
Ritz method. The assumed functions is formed by 
using Hermitian formulations as written in Eqs. (7)- 
(8) 
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where id is displacement coefficients, i is slope 

coefficients, the i subscript represent node order 
located from left (0) to right (n) of beam structure. The 
domain between node i-1 and node i  are designated as 

element number i. 0 ( )i x  and 1( )i x  are polynomial 

functions associated with displacement and slope 
coefficients, respectively and defined on the domain of 

elements i and i+1 that are adjacent to node i. ka and 

kb are function parameters, which can be determined 

by using Eq. (9). 
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Note that these function parameters have different 
values depending on how many elements of beams are 
divided and how many nodes are in each element. In 
the solution presentation in the next section, the 
notation “eX nY” will be employed to represent that 
over the beam length there are X elements, each of 
which has Y nodes. According to the Ritz method, 
these polynomial functions must be satisfied essential 
boundary conditions. For a simply supported beam the 
essential boundary conditions at both ends are 

(0) ( ) 0w w L  but for a clamped-clamped beam they 

are (0) ( ) (0) ( ) 0w w L w w L     . 

 The equilibrium equations that are utilized to 
solve for id , i and  at any value of V can be 

obtained by finding the extremum of the total potential 
energy as indicated in Eq. (10).  

 0,  0,  0
i id  

  
  

  
   (10) 

After all of the unknown coefficient is calculated. The 
critical electric field can be determined by analyzing 
the plots between the applied voltage versus 
Lagrange’s multiplier. This will be discussed in more 
details in the following section. 
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3.4 Stability testing  

 Bordered Hessian matrix 
n

H expressed in Eq. (11) 

is utilized to test stability of the equilibrium shapes of 
the buckled smart beam. 
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 Stability of each state can be identified with sign 
sequences of bordered leading principle minors from 
bordered Hessian matrix. If sign sequences are shown 
as

2 3 4
, , , ... , 0

n
H H H H  , then that state is a 

stable equilibrium, otherwise is an unstable 
equilibrium [8].  
 

4. Computational Results 

4.1 Characteristic of the buckled smart beam 
 The dimensions and material properties of the 
smart beam used in this sample calculation are 
tabulated in Tables. 1 and 2, respectively.  The 
relations of the applied voltage V and Lagrange’s 
multiplier  are illustrated in Fig. 5. When 0V  the 
smart beam is at the 1st stable buckled shape or 
configuration 1 with a positive Lagrange multiplier or 
compressive end force resulting from end-shortening. 
The corresponding deformed shape at this 
configuration is shown in Fig. 6, revealing small 
curvature at the middle part of the beam due to 
additional stiffness from the piezoelectric layer. When 
the smart beam is actuated with plus voltage ( 0V  ) 
in Fig. 5, the piezoelectric material is, therefore, 
elongated. Larger compressive reaction force from 
supports (higher  ) is induced during this electric 
field increment until the middle shape of the beam 
starts to be inverted from configuration 1 to 3. At this 
state, at 290  N/m2 the applied voltage reaches the 

limit point, or the critical voltage sV . A slightly higher 

electric field input leads to a noncontinuous sudden 
change in shape or snap-through to configuration 4. 
The sudden transition during snap-though action 
results in the decreasing of  such that it becomes a 
negative value, or equivalently the constraint force 
acting on the smart beam is in tension after snap-

through. Subsequently, if the electric field is decreased, 
the smart beam gradually changes to configuration 5 
until reaches the state of zero voltage at configuration 
6. The inverted buckled shapes of the smart beam in 
configurations 4 – 6 with the decreasing electric field 
are also comparatively illustrated in Fig. 6. The 
stability checking is also performed by using Eq. 11. 
 
Table. 1 Dimension of smart beam’s component 
 

Dimension (mm) Piezoelectric 
actuator [9] 

Zinc-coated 
steel 

Thickness  0.3 0.2 
Length  85 345 

 
Table. 2 Properties 
 

Properties 
Piezoelectric 
actuator [9] 

Zinc-coated 
steel  

Young modulus, E  
( )GPa  30.34 78.427 

Piezoelectric 

coefficient, 11d ( )
pC

N
 4.6x102 - 

 

 
Fig. 5 Relations of applied voltage V and Lagrange’s 

multiplier   of end-displacements 0d = 0.6, 0.9 and 

1.2 mm 
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Fig. 6 Shape deformation for 0d = 1.2 mm 

 The computation confirms the state of stable 
equilibrium of initial configuration 1 and moderately 
activated configuration 2. However, when the voltage 
reaches the critical value the beam turns into unstable 
equilibrium at configuration 3, and dynamically jumps 
to the other adjacent stable state, configuration 4. If the 
electrical field is reduced to zero, the beam follows the 
stable equilibrium configuration path 4 – 5 – 6 and 
finally attains the inactivated inverted shape.   
 In different perspective shown in Fig. 7, the 

relationship between mid-span displacement /2Lw  and 

V indicates the occurrence of the snap-through action 
at the 3rd configuration, which is a limit point of the 

buckled smart beam. The critical voltage sV  is 

approximately 1300 V in this case. It should be noted 
that there theoretically appears the other limit point in 
the figure if the negative voltage is applied to the smart 
beam in configuration 6. This negative field will cause 
the snap-back phenomenon, which can finally bring 
the smart beam back to its original shape in 
configuration 1.     
 
4.2 Optimum length of segmented actuator 
   It can be seen from the above results that a single 
segmented piezoelectric actuator bonded on the smart 
beam can be utilized to activate the snap-through 
motion. Thus, it is interesting to investigate and search 

for the most effective length 0s of the segmented 

piezoelectric actuator that requires the lowest applied 
critical voltage. Non-dimensional variables, i.e.   
dimensionless actuator length *

0 0 0s s L ,  

dimensionless end-displacement *
0 0 0d d L , and 

dimensionless critical electric field in term of 
equivalent free piezoelectric strain 33SV Sd V p  are 

formulated and used in the following parametric 
studies to enable extension of the particular 
computational results by similitude law. 
 Relations of 

SV versus *
0s  regarding the different 

values of *
0d  are plotted in Figs. 11 and 12. The 

figures show the optimum actuator length is about 60 
percent of the total span length for the simply 
supported smart beam, and is approximately 50 
percent of the substrate length in the case of encastré 
smart beam irrespective of how large the edge 
compression is. It is also seen that the dimensionless 
critical electric field is not a linear function of the end 
shortening distance. A softening effect on the flexural 
stiffness of the buckled smart beam is obviously 
perceived, since the increasing rate of snap-through 
voltage is significantly slower than that of the end 
displacement. 

  

 
Fig. 7 Relation of mid-span displacement /2Lw  and 

applied voltage V       

 
Fig. 8 Dimensionless voltage vs. end distance relations 
of simply supported buckled smart beams (Hermitian 

e3 n3) 

 
Fig. 9 Dimensionless voltage vs. end distance relations 

of encastré buckled smart beams (Hermitian e7 n2) 
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5. Model validation 

 This section presents some validation of sV and 

initial amplitude of the buckled beam /2Lw obtained 

from the present energy model with the experiment. 
The simply supported smart beam cases are chosen for 
validation. The details of experiment setup are 
described in the following subsections. 

 5.1 Experiment  
 A smart beam having the same dimensions and 
properties as used in the simulation is fabricated for 
the experiment. A Macro fiber composite (MFC) 
model 8528-P1 was adopted as the piezoelectric layer 
and it is adhered to the zinc-coated steel at the middle 
of the metal substrate by a thin layer of Loctite E20P 
epoxy glue. Conductive epoxy is utilized to connect 
�he MFC electrodes with electrical wires. The photo 
of test specimen is shown in Fig. 9. It should be 
mentioned that the end mounting of the smart beam 
was meticulously designed to achieve simple support 
condition. Two aluminum rods are machined and 
longitudinally slotted with high precision in order to 
assemble to the beam with transition fit. The rods on 
the other hands were pulled to sit on the V-shaped 
support jig all the time by two small coil springs 
located at each end as shown in Figs. 10 and 11.  
 The schematic diagram of experiment setup is 
shown in Fig. 12. During the tests, the smart beam 
specimen was connected on grippers of a universal 
testing machine that can control the end-displacement 

0d  parameter. The end displacement 0d was varied 

from 0.3 to 1.6 mm. The voltage signal was generated 
by a computer and sent out through an A to D cards, 
Ni cDAQ-9172, a cards reader device that interchange 
signals between analog to digital from cards to a 
computer. After that, the signal was changed to analog 
by the Ni 9263 card. Then, the signal was fed to Piezo 
Driver, voltage amplifier, whose output was 
electrically wired to the MFC actuator and also send 
signal back to computer by the Ni 9215 card.  
Multimeter was also used for match the voltage 
between the MFC actuator and a computer. Before and 
after actuation, the residue voltage from the MFC was 
discharged by a resistor to neutralize the system.  
 In the experiment, the voltage amplitude was 
steadily increased and stopped immediately after the 
snap-through had detected. Each cases were repeated 
for 3 times and their mean values of data are presented. 
The voltage on a computer monitor was double 
checked with a multimeter. The voltage amplitude was 
controlled to stay in the range of 0 to 1400 volt in 
order to prevent the over-voltage supply to the MFC 
[9]. 
 
  
 

5.2 Validation results 

 The relationship between sV and 0d  as well as the 

middle displacement before actuating 0, /2Lw  and 

0d are illustrated in Fig. 13. The results show very 

good agreement between the present energy model and 
experiment. For the sake of comparison, Hermitian 
Ritz function e3 n3 and e7 n2 are also presented in the 
figure, from which slight discrepancies can be 
observed. This validation ensures the accuracy and 
applicability of the developed mathematical model. 
 

 

Fig. 10 MFC actuator on a zinc-coated steel beam with 
simple support ends.  

 

Fig. 11 Detail of simple support jig 

 

Fig. 12 Schematic diagram of experiment 
 
 

Fig. 13 Validated results of 0, /2Lw and sV compare 0d  
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6. Conclusion 

 A mathematical models of piezoelectrically-
induced snap-through buckling in a buckled beam 
bonded with a segmented piezoelectric actuator is 
developed. The computational results are validated 
with the experiments and excellent agreements can be 
found. The model can be used to predict snap-through 
voltages and the corresponding actuated shapes of 
buckled smart beams with different piezoelectric 
actuator sizes and various end shortening 
displacements. For simply supported buckled smart 
beams, the optimum actuator size is about 60 percent 
of the substrate length in order to the minimum critical 
voltage, whereas for encastré buckled smart beams, the 
optimum actuator size is approximately 50 percent of 
the substrate length. However, it should be noted that 
in this study, piezoelectric actuator is only placed 
symmetrically with respect to the middle location on a 
buckled beam. Therefore, further investigation should 
be performed to search for the possible global 
minimum snapping voltage in the case of an 
asymmetric segmented actuator. 
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