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Abstract 

The generalized conforming triangular finite element with nine degrees of freedom for thermal bending 

analysis of thin plate due to the temperature gradient through its thickness is developed.  The finite element 

formulation with detailed finite element matrices are derived based on the modified potential energy principle and 

the generalized compatibility conditions.  The closed-form of the thermal loading which can be apply directly to the 

computer program is also derived and express.  The effectiveness of the proposed element is evaluated by several 

examples.  Results show that the element exhibits good performance for the analysis of plate bending problem under 

thermal loading. 
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1. Introduction 

 The finite element method has been widely used 

for the analysis of plate bending problems as the exact 

solutions of the real applications cannot be derived.  

The difficulty of the finite element in plate bending is 

the requirement of C1 continuity so that the value of 

transverse deflection w and its slope must impose 

continuity between elements.  Such difficulty brings 

about various types of plate bending elements which 

have been developed during the past decades [1-4].   

 Early developed plate bending elements were the 

non-conforming element type, such as the well-known 

BCIZ triangular element [5] which could provide good 

solution accuracy in plate bending analysis.  The 

element was non-conforming since the normal slope 

along the element edges cannot be represented by the 

corner node connections.  It was found that the 

solution obtained from the non-conforming elements 

sometimes was superior to that obtained from the 

conforming element type.  However, these non-

conforming elements sometimes caused divergent 

results in some problems so that the convergence to 

the correct result could not be ensured.  Meanwhile, 

the conforming element types were quite complicated 

to formulate and were found to be too stiff as it 

imposed excessive conditions of continuity [6].  As a 

result, these elements generally did not used in the real 

applications. 

 Another element type was the thin plate DKT 

element based on discrete Kirchhoff theory [3].  

Although this element provides high solution accuracy 

[7, 8], the element formulation was quite complicate 

and the transverse displacement w was defined only 

along element sides.   

 Another type of thin plate bending element was 

the generalized conforming element [9].  The 

generalized conforming element was formulated based 

on the modified potential energy principle and the 

generalized compatibility conditions by using the point 

compatibility conditions at each node and the line 

compatibility conditions along each side [10].  The 

nine degrees of freedom triangular element GPL-T9 

then can be formulated.  The result obtained from the 

element passes the patch test and provides excellent 

performance.  The generalized conforming element is 

also easy to program as the closed-form expression of 

the corresponding finite element matrices can be found.  

However, the formulations of the GPL-T9 element 

were developed for bending analysis only for the 

plates under the applied mechanical loading.  The 

finite element formulation for this element type under 

thermal loading, such as temperature gradient through 

the plate thickness, has not been found in any literature.  

The main objective of this paper is thus to present the 

formulation and the effectiveness of the GPL-T9 

element in thermal bending analysis of thin plate. 

 The paper begins by presenting the governing 

differential equations for predicting the thin plate 

bending behaviors under the thermal loading.  The 

corresponding finite element equations that include the 

element matrices with the thermal load vector are 

derived and presented.  Several thin-plate thermal 

bending examples are used to evaluate the solution 

accuracy of the finite element formulation developed.  

Such solutions are also compared with those occurred 

from the well-known nonconforming triangular thin 

plate bending element (BCIZ) and the discrete 

Kirchhoff triangular element (DKT). 

 

2. Governing Equations 

 The equation for the transverse deflection w in z-

direction normal to the x-y plane of a thin plate with 

the temperature T(z) through its thickness t is given by 

the equilibrium equation [11],  
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where p(x,y) is the applied load normal to the x-y plane, 

ν is Poisson’s ratio and D is the bending rigidity which 

can be defined as, 

  
 

3

212 1

Et
D





 (2) 

where E is the modulus of elasticity, t is the thickness 

of the plate.  The thermal moment MT in Eq. (1) is 

defined by, 
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3. Finite Element Equations 

3.1 Generalized Conforming Element 

 To formulate a generalized conforming thin plate 

element, the modified potential energy theorem should 

be used as [12], 
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where p  and mp  are functions of minimum and 

modified potential energy theorems, respectively.  H is 

the additional energy corresponding to the 

incompatible displacements on the element boundary 

eA  in which 
nQ , 

nM  and 
nsM  are Lagrange 

multipliers which denote the boundary tractions 

(transverse shear, normal moment and twisting 

moment) on the boundary 
eA , n and s denote the 

normal and tangential directions of the boundary, 

respectively.  w  is the deflection within the element.  

w  is the boundary deflection of the element.  And s  

is the boundary rotation about the tangential axis s on 

eA . 

 In the limit as the size of the element tends to zero, 

the additional energy H is assumed to vanish such that, 
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Therefore, mp  degenerates to p  and the element 

stiffness matrix can be formulated on the basis of the 

degenerated form p .  The element so formulated is 

called a generalized conforming element. 

 In order to satisfy Eq. (7), we will first apply the 

formula of integration by parts and rewrite Eq. (7) as, 
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where j denotes the nodal point of the element and 

 ns j
M  is the difference between the twisting 

moments acting at both sides of nodal point j.  Then, 

the deflection field w is assumed to satisfy the 

following conditions, 
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Equation (9) is the point compatibility condition for 

nodal deflection at each node.  Other two equations, 

Eqs. (10) - (11), are the line compatibility conditions 

for average deflection and average normal slope along 

each side of the element.  It is obviously that Eqs. (9) - 

(11) are a strong form of the condition Eq. (8).   

3.2 The Generalized Conforming Triangular 

Element (GPL-T9) 

 A triangular thin-plate bending element with 9 

DOF is shown in Fig. 1.  The vector of nodal 

unknowns  
e

  is defined as, 

  1 1 1 2 2 2 3 3 3
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where  /xi i
w y     and  /yi i

w x      denote 

the nodal rotations. 
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Fig. 1 Triangular plate bending element with 9 DOF 

 

 The deflection w  and normal slope s  along side 

12 are assume to be cubic and linear respectively as, 
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where 
iL  (i = 1, 2, 3) denotes area coordinates, 

id  (i = 

1, 2, 3) denotes the side length, and 
3 1 2b y y   and 

3 2 1c x x   are the coefficients appear in the area 

coordinates.  Similar expressions for side 23 and 31 

can be obtained by permutation.  

 Therefore, the deflection field w over the element 

can be express as follows, 
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It can be verified that the nodal compatibility condition 

Eq. (9) is already satisfied.  The coefficients 

1 2 6, , ,    in Eq. (16) are determined from the line 

compatibility condition Eqs. (10) and (11).   

 Consequently, the deflection field w can be 

rewritten in the form of, 
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The expression for six other shape functions can be 

obtained by permutation.  Based on these shape 

functions, the element stiffness matrix  K  can be 

derived. 

 The finite element equations for thermal bending 

analysis of thin plate can be written in the form of, 

       T pK F F    (21) 

where  K  is the element stiffness matrix,   is the 

vector of the element nodal unknowns which contains 

transverse deflection and the rotations at each node, 

and  TF  is the equivalent nodal forces due to the 

thermal load associated with the temperature gradient 

through the plate thickness.  While  pF is the nodal 

force vector due to the applied lateral loads which is 

not considered in this study.   

 The element stiffness matrix  K  is given by, 
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The closed-form of the stiffness matrix can be written 

as, 

       
T

K R Q R  (25) 

where the matrices  R  and  Q  is given in Appendix. 

 The vector of the equivalent nodal forces due to 

the thermal load  TF  in Eq. (21) can be derived by, 

      
1

1

T

T

A

F B M dA



   (26) 

where the vector  M  is given by, 
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The thermal moment, MT, in Eq. (27) is the function of 

the temperature through the plate thickness as defined 

in Eq. (3).  The vector of the equivalent nodal thermal 

forces  TF  in Eq. (26) can be rewritten as, 
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or    
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where the closed-form of matrix  BA is shown in 

Appendix. 

 The closed-form expressions of the thermal load 

vector in Eq. (29) which have been derived in this 

study can be implemented for computer programming 

directly.  The validity of the derived thermal load 

vector above is examined by thermal plate bending 

examples that have exact solutions as presented in the 

next section. 

 

4. Applications 

 Three examples which have exact solutions are 

presented in this section.  The first example is chosen 

to evaluate the performance of the GPL-T9 plate 

bending element.  The other two problems demonstrate 

the effectiveness of the proposed element compared 

with the DKT and BCIZ triangular elements. 

4.1 Free square plate  

 A square plate of which all edges are set to be free 

and the temperature varies linearly through the 

thickness is shown in Fig. 2.  The plate is assumed to 

have the thickness (t) of 0.01 m, the modulus of 

elasticity (E) of 7.2×1010 N/m2, the Poisson’s ratio (ν) 

of 0.33, and the thermal expansion coefficient (α) of 

2.3×10-7 /°C.  The plate has the temperatures of the 

upper surface (TU) of 100 °C and the lower surface 

(TL) of 25 °C.  The exact transverse deflection (w) of 

free square plate with linear temperature distribution 

through its thickness can be derived [13] and is given 

by, 

 
 2 2( , )

2

T
w x y x y

t


    (30) 

where T  is the temperature difference between 

upper and lower surface.   

 Due to its symmetry, only the top right quarter of 

the plate is modeled and analyzed.  The finite element 

model for this problem is illustrated in Fig. 3.  The 

model is divided to 4x4 intervals consisted of uniform 

meshes with 25 nodes and 32 elements.  Figure 4 

shows the predicted transverse deflections along the x-

axis obtained from GPL-T9 element.  It can be seen 

that the results obtained from the proposed element are 

definitely the same as the exact solution at any points 

of nodes.  This shows the performance of the GPL-T9 

element that can accurately predict the transverse 

deflections of the plate due to temperature gradient 

through its thickness. 
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y

a = 2 m

b = 2 m

T
TU

TL

 
Fig. 2 Free square plate with linear temperature 

gradient through its thickness. 

x

y

 
Fig. 3 Finite element meshes of free square plate 
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Fig. 4 Comparative transverse deflections along x-axis  

 

4.2 Clamped and simply supported rectangular 

plate  

 The clamped and simply supported rectangular 

plate of which the temperature varies linearly along the 

thickness only is considered.  This plate is clamped 

along the edges y = ±b/2 and simply supported along 

the edges x = 0 and x = a as shown in Fig. 5.  The 

derivation for the exact solution of the deflection (w) is 

given in Ref. [14] as, 

 
1,3,5

( , ) cosh sinh sinm m m m m m

m

w x y A y D y y K x  
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where , , ,m m m mA D K  and 
m  are, 
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while D and MT are given in Eqs. (2) and (3), 

respectively. 

x

a

b/2

b/2

T

TU

TL

y

 
Fig. 5 Clamped and simply supported rectangular plate 

with linear temperature gradient through its thickness. 

 

 In this example, the geometric properties of plates 

are the width (a) = 2 m, the length (b) = 4 m, and the 

thickness (t) = 0.01 m.  The physical properties of the 

plate are taken as the modulus of elasticity (E) of 190 

GPa, the Poisson’s ratio (ν) of 0.3, and the thermal 

expansion coefficient (α) of 16×10-6 /°C.  The 

temperatures of the upper surface (TU) and the lower 

surface (TL) of the plate are 60 °C and 0 °C, 

respectively. 

 Since the problem is symmetrical, a quarter of the 

plate is analyzed.  The models consist of the uniform 

4x8, 8x16 and 16x32 mesh divisions which have 45 

nodes, 153 nodes and 561 nodes, respectively.  The 

example of finite element models using in the analysis 

is shown in Fig. 6.  The deflections at the plate center 

(wc) obtained in the present analysis are illustrated in 

Fig. 7.  It can be seen that the results obtained from all 

element types converge to the exact solution as the 

meshes are refined.  The results show that the GPL-T9 

element performs very well and provides higher 

solution accuracy than other element types. 
 

 
 

Fig. 6 The 4x8 finite element meshes of the clamped 

and simply supported rectangular plate. 
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Fig. 7 Predicted central deflections of the clamped and 

simply supported rectangular plate compared with the 

exact solution. 

 

4.3 Simply supported parallelogram plate 

 A problem statement of the simply supported 

parallelogram plate with linear temperature gradient 

through its thickness is shown in Fig. 8.  The 

dimensions of the plate in the analysis are a = 2 m, b = 

1 m and γ = 30°.  The plate is assumed to have the 

modulus of elasticity (E) of 190 GPa, the Poisson’s 

ratio (ν) of 0.3, the thermal expansion coefficient (α) 

of 16×10-6 /°C, the thickness (t) of 0.01 m, the upper 

surface temperature (TU) of 60 °C, and the lower 

surface temperature (TL) of 0 °C.  The exact central 

transverse deflection (wc) of the simply supported 

parallelogram plate for a/b = 2 and γ = 30° is given by 

[15], 

 

2

0.090135 T

c

M b
w

D
  (37) 
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Fig.8 Simply supported parallelogram plate with linear 

temperature gradient through its thickness. 

 

where D and MT are the same as written in Eqs. (2) and 

(3), respectively. 

 The model is discretized into uniform meshes of 

8x4 (45 nodes), 16x8 (153 nodes) and 20x10 (231 

nodes) intervals as illustrated in Fig. 9 (a)-(c).  The 

predicted central transverse deflections compared with 

the exact solution are shown in Fig. 10.  The results 

indicate that both DKT and GPL-T9 elements 

apparently provides good solution accuracy while the 

solution obtained from the non-conforming BCIZ 

element diverges from the exact solution. 

 

 
 (a) (b) (c) 

Fig.9 Finite element meshes of parallelogram plate. 
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Fig.10 Predicted central deflections of the simply 

supported parallelogram plate compared with the exact 

solution. 

 

5. Conclusion 

 The generalized conforming triangular element for 

plate bending analysis with the temperature gradient 

through its thickness was presented.  The finite 

element formulation with detailed finite element 

matrices were derived based on the modified potential 

energy principle and the generalized compatibility 

conditions.  The finite element stiffness matrix and the 

equivalent nodal forces due to the thermal load of the 

GPL-T9 plate bending element were derived and 

rewritten in closed-form which can be used in 

computer programming directly.  The presented 

examples demonstrated that the generalized 

conforming plate bending element GPL-T9 with the 

proposed thermal load formulation provides good 

solution accuracy in thermal bending analysis of thin 

plate.  The results obtained from the proposed element 

also converge to the exact solution when the mesh is 

refined.  The solution accuracy obtained from both 

DKT and GPL-T9 elements is quite in the same high 

quality; however, the GPL-T9 is better when we 

consider in the simplicity of its formulation.  Moreover, 

the non-conforming plate bending element BCIZ is 

somehow unreliable in some cases as we have seen in 

the third example that it gives diverged solution.   
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7. Appendix 

 The closed-form of the stiffness matrix  K  is 

given in Eq. (25) as, 

 
      

T
K R Q R  (A1) 

where the matrices  R  and  Q  is defined by, 
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 The vector of the equivalent nodal thermal forces 

 TF  is given in Eq. (29) as, 

    
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where the closed-form of matrix  BA is in the form of, 
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