
                The 7th TSME International Conference on Mechanical Engineering        
  13-16 December 2016     

DRC0007 

Oral Presentation 

Control of Bicycle Leaning with Steering and Mass-Moving 
Stabilization 

Pongsakorn Seekhao1, Kanokvate Tungpimolrut2, and Manukid Parnichkun1,* 

1 Mechatronics, Asian Institute of Technology, Klong Luang, Pathumthani, 12120, Thailand 
2 National Electronics and Computer Technology Center, Klong Luang, Pathumthani, 12120, Thailand 

* Corresponding Author: E-mail: manukid@ait.asia, Phone: +662-524-5229, Fax: +662-524-5697 

Abstract 
This paper presents the design of an unmanned electrical bicycle which can balance itself in the upright 

position while moving at a constant forward speed. The bicycle is balanced by applying mass-moving together with 
steering to share the balancing control load. The nonlinear dynamics model of a bicycle along with a balancing mass 
is derived from the Euler-Lagrange equation of motion and nonholonomic constraints with respect to translation and 
rotation relative to the ground plane. This nonlinear dynamics model is then linearized around the upright position 
and combined with DC motor model to obtain the complete linearized dynamics model. The linear quadratic 
regulator (LQR) is implemented on the bicycle to control its balance. The simulation results using 
MATLAB/Simulink show that the system using both steering and mass-moving in balancing obtains better 
performance in terms of leaning range and balancing time than the system using only steering in balancing. Real 
experimental results are also in line with the simulation results. 

Keywords: bicycle leaning, bicycle balancing, steering, mass-moving, linear quadratic regulator  

1. Introduction 

 Electrical bicycles are very useful in 
transportation because of their advantages in 
environmental friendliness, light weight, and 
capability of traveling in narrow roads, when 
compared with other vehicles using internal 
combustion engines. However, the bicycles are 
unstable in nature. Without proper control, they easily 
fall down. Hence, the development of self-balancing 
electrical bicycles or bicycle robots is a very 
interesting topic for many researchers in recent years. 
An example of bicycle robots is Murata Boy 
developed by a Japanese company in 2005 [1]. 
 Bicycle robots have many potential applications 
such as used as autonomous riderless bicycles for 
carrying products, used for disable people, and used as 
learning bicycles for new riders or children. Even for 
those people who have already known how to ride 
bicycles, it will be more comfortable and safer if no 
balancing effort is required during riding. Furthermore, 
balancing control of a bicycle robot is a challenge 
topic for many researchers in dynamics control and 
robotics fields because of the instability, nonlinear 
characteristics, parameter variations, and uncontrolled 
external disturbances of the system. Therefore, bicycle 
robot is an interesting platform to test and verify 
performances of control algorithms. 
 Balancing of bicycle robots can be separated into 
three major methods: using flywheel, heading steering, 
and mass moving. 
 In balancing by using flywheel [1-3], one or more 
flywheels are mounted on the bicycle robot in various 
ways to generate a torque against the bicycle’s falling. 
Bicycle robots using this balancing method can be 
balanced at both zero and low forward speeds. 

 In balancing by heading steering [4-6], a steering 
motor is mounted on the bicycle robot to change the 
heading angle in order to generate a centrifugal force 
to balance the bicycle. Bicycle robots using this 
balancing method cannot be balanced at zero speed but 
can be balanced easier at higher speed compared with 
using other methods. 
 In balancing by mass moving [7-9], a balancing 
mass is mounted on the bicycle robot and can be 
moved in order to keep the combined center of gravity 
(COG) of the whole system on the line between both 
wheel-ground contact points such that the bicycle can 
remain upright. Bicycle robots using this balancing 
method can be balanced at both zero and low forward 
speeds. However, this method requires very high 
balancing torque and wide mass-moving range, which 
causes the bicycle to be easily unstable. 
 In this paper, an integrated stabilizing technique 
by both steering and mass moving is proposed to 
balance the bicycle robot in the upright position at a 
constant forward speed. Nonlinear dynamics model of 
this robot is derived by applying the Euler-Lagrange 
equation of motion to the model which consists of a 
bicycle and a downward balancing mass or pendulum. 
The derived nonlinear model is then linearized around 
the upright position and also combined with DC motor 
model to obtain the completed linearized dynamics 
model. LQR is implemented on the system, and then 
the control performance is evaluated by simulations 
and experiments. 
 Contents of this paper are organized as follows. In 
section 2, the dynamics model of the bicycle robot is 
derived. Section 3 describes the concept of LQR. 
Simulation and experimental results are shown in 
section 4. Finally, conclusions are mentioned in 
section 5. 
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2. Dynamics Model of Bicycle Robot 

2.1 Mechanical Model 
 Fig. 1 and Fig. 2 show coordinate system and 
parameters of the bicycle robot in side view and back 
view respectively. The direction of bicycle forward 
movement is defined as x-axis, the right side direction 
is defined as y-axis, and the downward vertical 
direction is defined as z-axis. The model consists of 
two individual components: a bicycle and a downward 
balancing mass (which is also called as a pendulum). 
Three DC motors are installed in the bicycle robot for 
moving the pendulum, steering, and driving the 
bicycle. 

 
Fig. 1 Bicycle model in side view 

 
Fig. 2 Bicycle model in back view 

Parameters in the model are defined as follows. 

- 1m  is the mass of the bicycle (excluding 

pendulum). 

- 2m  is the mass of the pendulum. 

- 1I  is the inertia of the bicycle about x-axis. 

- 2I  is the inertia of the pendulum about x-axis. 

- a  is the projection distance along x-axis from the 
rear wheel-ground contact point to the bicycle’s 
COG. 

- b  is the wheel base. 

- h  is the length measured from the ground to the 
bicycle’s COG. 

- 1l  is the length measured from the ground to the 

pendulum’s rotation axis. 

- 2l  is the length measured from the pendulum’s 

rotation axis to the pendulum’s COG. 
-   is the head angle. 
- v  is the speed of the bicycle. 

- 1  is the lean angle (measured from the vertical 

axis). 

- 2  is the pendulum angle (in respect of the lean 

angle). 
-   is the steering angle. 

- 
2

  is the required torque for pendulum moving. 

 Each wheel is assumed thin and thus touches the 
ground at a single contact point. The wheels, which are 
also assumed non-slipping, are modeled by holonomic 
constraint in the normal (vertical) direction and by 
nonholonomic constraint in the longitudinal and lateral 
directions. There is no aerodynamic drag, no frame 
flexibility, no suspension system, and no propulsion 
(the speed v  is constant). Friction in the system is 
assumed very small and negligible. From Fig. 2, the 
system may also be considered moving laterally along 
y-axis while it is moving forward with steering, thus 
the system has three controlled degrees of freedom 

which are 1 , 2 , and y . 

 The Euler-Lagrange equation of motion as shown 
in Eq. (1) is used to derived the dynamics model of the 
bicycle robot. 
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where 
- L  is the Lagrangian, defined as PKL  . 
- K  is the total kinetic energy. 
- P  is the total potential energy. 

- nq  is the generalized coordinate for the nth 

degree of freedom. 

- nQ  is the generalized torque (or force) for the nth 

degree of freedom. 
 By solving Eq. (1), three nonlinear equations of 

motion for nq  = 1 , 2 , and y  are derived as Eqs. 

(2) – (4) respectively. 
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 It is observed from the above equations that there 

is no torque for 1nq  because that joint is passive. 

The torque for 2nq  is directly derived from the 

pendulum’s motor torque and its transmission ratio. 

Moreover, the force for yqn   is the centrifugal 

force generated while the system is moving forward in 
curvature. 
 For simplicity, nonlinear equations of motion are 

linearized around the points of 01   and 02  , 

then Eqs. (2) – (4) become Eqs. (5) – (7) respectively. 
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 Since driver circuits of both pendulum motor and 
steering motor require their inputs as PWM (Pulse 
Width Modulation) signals whose duty cycles are 
proportional to the corresponding voltages, both 
balancing-motor models have to be included in the 
linearized mechanical model to form the voltage-input 
system model. 

2.2 Pendulum Motor Model 
 Eq. (6) shows that the required torque generated 
from the pendulum motor and its transmission needs to 
be controlled. For simplicity, the armature inductance 
of the DC motor is assumed very small and negligible. 
The required torque equation is derived as Eq. (8). 
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where 

- gk  is the transmission ratio. 

- bk  is the back emf (electromotive force) constant 

of the motor. 

- k  is the torque constant of the motor. 

- R  is the armature resistance. 

- 
2

V  is the applied armature voltage. 

 By substituting Eq. (8) into Eq. (6),  
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 All three equations of motion as expressed in Eq. 
(5), Eq. (9), and Eq. (7) can be rewritten in the matrix 
form. 
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 From the matrix Q  of Eq. (10), it is observed that 

the input applied to the pendulum motor is already the 
function of the voltage, but the input applied to the 
steering motor is still the function of the steering angle, 
so the steering motor and its load (the front-fork 
assembly) is considered in the next subsection. 

2.3 Steering Motor Model 
 Eq. (7) shows that the required steering angle 
moved by the steering motor and its transmission 
needs to be controlled. For simplicity, the armature 
inductance of the DC motor is assumed very small and 
negligible. The equation representing the relation 
between the required steering angle and the applied 

voltage ( V ) is derived as Eq. (11). 
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- eqJ  is the equivalent inertia at the armature 

(which includes both the armature inertia and the 
load inertia). 

- eqD  is the equivalent viscous damping at the 

armature (which includes both the armature 
viscous damping and the load viscous damping). 

 Since the steering motor is loaded with the front-
fork assembly, all steering components are considered 

as one subsystem. Therefore, 1k  and 2k  are derived 

by applying MATLAB System Identification Toolbox 
based on Eq. (11) with the experimental data which are 
collected from randomly moving the steering motor 

along with the front-fork assembly around the position 
of 0 . 
 By combining Eq. (10) with Eq. (11), the 
completed linearized dynamics model can be 
represented by the state-space model. 
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 The derived state-space model completely 
represents the system because it combines the bicycle 
dynamics together with motor models. The voltage 
inputs make the system model ready to be 
implemented because the control gains can be directly 
used to calculate the PWM signals of both motors. 
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3. LQR 

 The theory of optimal control [10] is concerned 
with operating a dynamics system at minimum cost. 
The case where the system dynamics are described by 
a set of linear differential equations and the cost is 
described by a quadratic function is called the LQ 
problem. 
 A particular form of the LQ problem that arises in 
many control system problems is that of the Linear 
Quadratic Regulator (LQR) where all of the matrices 
are constant, the initial time is set to zero, and the 
terminal time is taken in the limit of infinity (this last 
assumption is what is known as infinite horizon). 
 For a continuous-time linear system described by 

BuAxx   with an infinite horizon quadratic cost 

function defined as  



0

dtRuuQxxJ TT , where 

Q  and R  are the state and control weighting matrices 

respectively, the feedback control law that minimizes 
the value of the cost is determined by Eq. (13). 

Kxu    (13) 

where 

- K  is the gain matrix, defined as SBRK T1 . 

- S  is the positive definite (or positive semi-
definite) solution of the Continuous-time 
Algebraic Riccati Equation (CARE), solved from 

QSBSBRSASA TT  10 . 

 
4. Simulations and Experiments 

 The bicycle robot is designed and built as shown 
in Fig. 3. 

 
Fig. 3 Bicycle robot 

 The robot is modified from a 26" mountain 
bicycle by installing a 24V 750W DC geared motor for 
mass-moving, a 24V 60W DC geared motor for 
steering, a 24V 350W brushless DC motor for forward 
driving, and their transmission mechanisms. 
Incremental rotary encoders are also mounted on each 
motor to measure their angles and further process their 

speeds. A MicroStrain 3DM-GX1 gyro sensor is used 
to measure the bicycle’s lean angle. An ARM Cortex-
M3 based microcontroller is selected as the main 
controller of the system. All system parameters are 
listed in Table. 1. 

Table. 1 System parameters 
Component Parameter Value Unit

Mechanical 
parts 

1m  46.00 kg 

2m  6.00 kg 

h  0.50 m 

1l  0.65 m 

2l  0.43 m 

1I  11.50 kg·m2 

2I  1.11 kg·m2 

a 0.49 m

b  1.09 m 

  1.26 rad 

Pendulum 
motor 

gk  15.60 - 

bk  0.07 V/(rad/s) 

k  0.07 Nm/A 

R 0.12 Ω 

Steering motor 
1k  16.76 1/s 

2k  0.45 (rad/s2)/V 

Driving motor v 1.50 m/s 
 
 In order to evaluate the performance of the robot 
balancing control, MATLAB/Simulink is used to 
simulate the system control. All parameters in Table. 1 
are substituted into the completed linearized dynamics 
model in the state-space form in Eq. (12), then the 
systems without and with mass-moving are tested by 
applying the LQR with different initial lean angles. 
 The weighting matrices Q  and R  are defined in 

such a way that the lean angle is prioritized compared 
with other states, and the balancing load is properly 
shared by both balancing motors. These weighting 
matrices are shown as follows. 
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 The simulation results are shown in Figs. 4 – 6. 

 
Fig. 4 Simulation results of robot balancing control in 

cases of without and with mass-moving when lean 
angle initialized as 1° 

 

 
Fig. 5 Simulation results of robot balancing control in 

cases of without and with mass-moving when lean 
angle initialized as 2° 

 

 
Fig. 6 Simulation results of robot balancing control 
with mass-moving when lean angles initialized as 3° 

and 4° 

 When the lean angle is initialized as 1°, it is 
observed from Fig. 4 that, in the case of balancing 
without mass-moving, the control signal of the steering 
motor starts at a maximum level of 24V, resulting in 
the maximum steering angle being increased to 12.9° 
at the time of 0.5 second, then both control signal and 
steering angle gradually decrease to zero after the 
bicycle posture returns to the upright position. The 
control signal of the pendulum motor shows at 0V 
because the system has no a mass-moving control. 
This makes the bicycle posture leans a bit more from 
1° to 2.1° at the time of 0.6 second and then gradually 
converges to the upright position within 6 seconds. 
Compared to the case of balancing with mass-moving, 
the control signal of the pendulum motor starts at 1.6V, 
resulting in the maximum pendulum angle being 
increased to 8.7° at the time of 0.5 second. The control 
signal of the steering motor starts at 6V, resulting in 
the maximum steering angle being increased to 1.1° at 
the time of 0.4 second. Then control signals as well as 
pendulum and steering angles gradually decrease to 
zero after the bicycle posture returns to the upright 
position. This makes the bicycle posture suddenly 
leans back from 1° to 0.6° at the time of 0.4 second and 
then reaches the upright position within 1.5 seconds. 
 When the lean angle is initialized as 2°, it is 
observed from Fig. 5 that, in the case of balancing 
without mass-moving, the control signal of the steering 
motor starts at the maximum level of 24V to increase 
the steering angle with its full effort. However by 
using this system design and forward speed, the 
steering angle cannot reach the required position in 
proper time, resulting in the anti-falling torque being 

too small, so the bicycle starts to fall down ( 1  > 30°) 

within 1 second. Compared to the case of balancing 
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with mass-moving, the control signal of the pendulum 
motor starts at 3.3V, resulting in the maximum 
pendulum angle being increased to 17.3° at the time of 
0.5 second, while the control signal of the steering 
motor starts at 12V, resulting in the maximum steering 
angle being increased to 2.3° at the time of 0.4 second. 
Then control signals as well as pendulum and steering 
angles gradually decrease to zero after the bicycle 
posture returns to the upright position. This makes the 
bicycle posture leans back from 2° to the upright 
position within 1.5 seconds. 
 Balancing with mass-moving when lean angles 
initialized as 3° and 4° is shown in Fig. 6. It is observed 
that the results show similar trend to ones with smaller 
initial lean angles described above. The required motor 
control signals are within 24V operating range. The 
steering angles are within 5° range. The bicycle 
posture returns from initial lean angles to the upright 
position within 1.5 seconds. However, the maximum 
pendulum angle of balancing with the 4° initial lean 
angle is increased to 34.6°, which is greater than the 
allowed mechanical limit of the designed robot and 
may not conform to linearization of the system model. 
So 3° initial lean angle should be considered as the 
maximum lean angle which this balancing method can 
be achieved. 
 In real experiments, the balancing performance of 
the developed bicycle robot is tested while moving 
forward on a 50-meter long straight road. The lean 
angle is initialized at the upright position and the 
balancing control is randomly disturbed by 
imperfections of the road surface. The experimental 
results in cases of without and with mass-moving are 
compared as shown in Figs. 7 and 8. 

 
Fig. 7 Experimental results of robot balancing control 

without mass-moving 

 

 
Fig. 8 Experimental results of robot balancing control 

with mass-moving 

 In case of balancing without mass-moving, it is 
observed from Fig. 7 that the control signal of the 
steering motor varies up to ±11.3V range, resulting in 
the steering angle being moved up to ±7.3° range. The 
control signal of the pendulum motor shows at 0V 
because the system has no a mass-moving control, 
resulting in the pendulum angle being freely moved. 
This makes the bicycle posture leans up to ±1.2° range. 
 Compared to the case of balancing with mass-
moving, it is observed from Fig. 8 that the control 
signal of the steering motor varies within ±4.6V range, 
resulting in the steering angle being moved within 
±3.7° range. The control signal of the pendulum motor 
varies within ±1.2V range, resulting in the pendulum 
angle being moved within ±1.2° range. This makes the 
bicycle posture leans within ±0.9° range. 
 The simulation and experimental results are 
consistent and show that the system using both 
steering and mass-moving in balancing obtains better 
performance in terms of leaning range and balancing 
time than the system using only steering in balancing. 
 

5. Conclusion 

 This paper presented a control method for 
balancing a bicycle robot at a constant forward speed 
by integration of mass-moving and steering. To keep 
the robot in the upright position, the downward 
pendulum was moved by controlling its motor torque 
to keep the combined COG of the system on the line 
between both wheel-ground contact points, while the 
steering assembly was also moved by controlling its 
motor position to generate a centrifugal force which is 
considered as the anti-falling torque. The completed 
linearized dynamics model was derived by using the 
Euler-Lagrange equation of motion, linearizing around 
the upright position, and then combining with DC 
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motor model. The LQR was used to control its balance. 
MATLAB/Simulink was used to evaluate control 
performance with different initial lean angles and to 
compare the balancing capability of the systems 
without/with mass-moving. The simulation results 
showed that the system using both steering and mass-
moving in balancing obtained better performance in 
terms of leaning range and balancing time than the 
system using only steering in balancing. The bicycle 
robot was already designed and built. Real 
experimental results were also in line with the 
simulation results. 
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