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Abstract 
The dynamics of Two-Wheeled Urban Transportation Vehicle is unstable and highly nonlinear. Like a 

two-wheeled inverted pendulum robot, the motion of Two-Wheeled Urban Transportation Vehicle is under a 
nonholonomic constraint which restricts the vehicle to move on its side way. This vehicle has 3-DOF. There are 
two motors power the left and right wheels. This indicates that it is in the class of under-actuated mechanical 
system which is a system that has fewer inputs than its degree of freedom. This makes Two-Wheeled Urban 
Transportation vehicle difficult to be controlled as desired. Thus, it is attractive to researchers worldwide. This 
paper studies its modeling and control algorithm to balance the vehicle while steering it. A designed PD controller 
is proposed. Its performance is examined based on the simulation and experiment. The simulation and 
experiment results are compared and discussed.  
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1. Introduction

Two-wheeled inverted pendulum has evoked a 
number of researchers worldwide due to its unique 
physical [1-4,7].  Its motion is under a nonholonomic 
constraint which restricts the robot to move on its 
side way. This robot has 3-DOF. There are two 
motors powering the left and right wheels. This 
indicates that it is in the class of under-actuated 
mechanical system which is a system that has fewer 
inputs than its degree of freedom. This makes Two-
Wheeled Inverted Pendulum robot difficult to be 
controlled as desired. In this research the robot is 
equipped with a gyro sensor, acceleration sensor and 
rotary encoders. They are used to feedback the 
desired signal used by the controllers. The control 
algorithm is shown that it has ability to balance and 
steer the vehicle. 

2. Dynamic Modeling of Two-Wheeled Urban

Transportation Vehicle 

    The dynamics of two-wheeled urban 
transportation vehicle is formulated by Kane’s method. 
As illustrated in Fig. 1, the configuration of the 
vehicle is specified by 3 generalized coordinates (q1, 
q2, q3). The system has 3 DOF. The system consists 
of three rigid bodies, two wheels and vehicle body. 
The joints at each wheel attached to two motors 
which are rigidly connected to the vehicle body. Thus, 
they reduce 10 degree of freedom. There are 2 
constraints which confine the wheels on the ground. 
Thus, left and right wheels make the vechile 
maneuver on the plane. The wheels rotate on the 
ground without slip (pure rolling). There are two 
nonholonomic constraints which restrict the wheel 
from motion toward the slide way. Thus, the robot 
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turns due to different speed between the left and 
right wheels. The generalize forces are the torque 
applied by two motors place on the vehicle body. 
Another inertia force is the gravitation on the vehicle.  

Fig. 1 Free Body Diagram of the vehicle 

2.1 Derivation  of Equation of Motion 

Kane’s method proposed an effective method to 
derive a dynamics equation of motion of multi-body 
system based on partial velocities [2,3].  The required 
differentiating to compute velocities and accelerations 
can be obtained through the use of algorithms based 
on vector products. The constraint can be imposed in 
the system. Thus, the complexity in derivation of 
equation of motion is reduced significantly. The 
equation of motion of two-wheeled urban 
transportation vehicle can be found and shown in a 
short form as expressed in Eq. (1). 

uQqWqqqBqqM  )(),()(             (1) 
The designed system was assumed to be a 

nonholonomic system in which no slip occurs 
between the wheels and the ground. Suppose the 
configuration of a system is specified by the n 
generalized coordinates q1, q2,...,qn. Assuming that 
there are m independent equations of constraint 
which are written as nonintegerable differential 
equations. n and m are positive integer number. 
Constraints of this type are known as nonholonomic 

constraints. The nonholonomic constraint which 
explains why the wheels do not slip on the ground. 

The generalized coordinates, qj , are 

       as shown in Figure 1.    is defined as 
a translational displacement in      direction.    is 
defined as a angular displacement in      direction. 
   is defined as a angular displacement in     
direction. Thus, the generalized speeds, ui , for 
Kane’s method are the first derivative terms of the 
generalized coordinates determined by the 
transportation theorem or direct differentiation method. 
The acceleration terms can be easily obtained by 
differentiating the generalized speeds. After 
determining the generalized coordinates, speed and 
acceleration, then we need to define the forces and 
torques on the body. 

The forces and torque on the vehicle system are 
assumed to be the forces and torques between the 
wheels and body of the driving motors, and the 
gravitational force on the center of gravity of the main 
body as described in Figure 1. These forces are Fs 
which are the forces acting on wheels and Ts are 
torques generated by motors on wheels, W is 
gravitational force on the body. 

Using the velocities, accelerations, angular 
velocities and angular accelerations already obtained 
we can derive the generalized active forces and the 
generalized inertia forces. In the Newtonian reference 
frame {N}, the generalized active forces,    , are 
constructed. And the generalized inertia forces,     , 
can be obtained. 

Finally, the equations of motion in eq. (4-6) are 
derived by using the relationship in eq. (3)  

       
                     (3) 
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  (6) 
Rearranging the equation of motion in state 

space representation, 
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 (7) 
where 

xx 1 , xx 2  , 3x  , 4x  , 5x  , 
6x

bm  is mass of the structure body of the vehicle 

wm  is wheel mass 

2I  is moment of inertia of the vehicle about it 
mass center in n2 – direction 

3I  is moment of inertia of the vehicle about it 
mass center in n3 – direction 

d is the distance from the center of the vehicle 
point F to mass center 

L is the half distance between left and right 
wheel 

R is the radius of the wheel 
3. Controller Design

       The vehicle is highly nonlinear. Thus, it is 
difficult to control [5,6,8]. Chosen PD controller is 
designed based on the mathematical model of eq. (7). 
The PD gains are tuned to obtain the desired 
balancing position. Firstly, the purpose of this study is 
to attempt to control the pitch angle, maintaining the 
uprising position (0). The control law chosen is 

 
DP KKu  .  In the equation of motion 

shown above, the 5thand 6th equations are mainly the 
steering dynamic of the vehicle. In this study, it is not 
our major objective. It will not effect the uprising 
control.  Third and forth equations are considered as 
the equation of motion for uprising position control. 
Our approach, we choose feedback linearization 
controller. Thus, the control law can be derived from 
the 3rd and 4th equations. 

Let rewritten them in simple form, 
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where 

))((3 3

2 IdmmmA bbw 

dmB b

)(3 bw mmC 

u is the applied torque ( 33   ). Since we 
interest in balancing uprising position, the right and 
left wheel have the same amount of torque. We want 
to design feedback controller ),( 43 xxuu  . 

Let introduce the new variable, z, 
  4xz (9) 

which yields the control law 
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Choosing a PD controller 
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This yields the closed-loop system. 

refDrefPPD KKKK             (12) 

if  0ref  and 0ref rad/s 
it reduces to 

0  PD KK         (13) 

This implies that state 3x and 4x go to 
zero asymptotically in finite time. 

Thus, the feedback controller, u, or computed 
torque is exact linearization or inverse dynamics. 
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(15) 
when  0ref  and 0ref rad/s. 

3.1 Stability Analysis 

For the chosen control law, the vehicle stability is 
need to be proved to be asymptotically stable. 
Lyapunov’s method of stability analysis is introduced 
to verify the stability of the system with the proposed 
feedback linearization controller.  Lyapunov’s method 

is the most common way to determine the stability of 
the nonlinear system such as this vehicle [5,6,8].  

Lyapunov’s Theorem 
1. V(t) is continuous first partial derivatives
2. V(t) is positive definite
3. V’(t) is locally negative definite
We try the standard Lyapunov function candidate 
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which is radially unbounded, 0)0,0( V  and 
0),( 43 xxV , )0,0(),( 43  xx . 

The derivative of V is 
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Inserting control law, u, from previous section 

0)(0 43434  xKxKxxxV DP
      (19) 

From above, the condition that makes 0V  is 
true when KP  and KD are large enough, since 34xx  
and 2

4x is always positive in both direction when the 
vehicle decline back and forth. 

For the proposed control law, u, V results in 
negative definite. Thus, the vehicle is asymptotically 
stable. 

3.2 Gain Tuning 

From previous section, proportional and 
derivative gains have to be large enough that keep 
the first order derivative of Lyapunov function 
negative definite. Thus, the gains are tuned by trial 
and error via simulation in MATLAB/Simulink. The 
acceptable results justify the value of gains. KP is 
about 30-40 larger than KD for our model. 

Ideally a motor can produce as much as torque 
the system requires. But in reality, the motor has 
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limitation of torque production which varies with 
motor speed. Some source of imperfection in the 
vehicle such as sensor error, floor surface, 
disturbance, error in assembling the vehicle, backlash, 
hysteresis and noise in microcontroller makes tuning 
procedure very difficult. Thus, the vehicle is built with 
some degree of less restriction which gives us some 
tolerance. To tune the controller gain with embedded 
in the microcontroller; we use the guide line given by 
the gains from simulation. For ease of programming, 
the control law is reduced to  

DP KKu    for 
programming. The complicated terms in the equation 
that are eliminated. This is by assuming them to be 
small number comparing with the gains. After some 
tedious trial, KP is 46 and KD is 1 for our vehicle.  

4. Simulation and Experiment Results

The simulation and experimental results show in 
Fig. 2 and 3. In Figure 2, tilt angle is controlled to 
obtain it original degree which is 0. From the 
simulation, the vehicle goes to the desired position at 
the origin in 2 sec. From the experiment, the vehicle 
oscillates while maintain the balanced uprising 
position.  Figure 3 illustrates that the tilt speed from 
the experiment oscillate about 0 rad/s while the tilt 
speed from the simulation goes to 0 rad/s in around 
2 sec. Comparatively, the simulation and 
experimental results share some agreement which is 
the vehicle stay in the bound region. Here is around 
+/- 2 degree about 0 degree positions.    

Fig 2. Tilt angle from simulation comparing with 
experiment 

Fig 3. Tilt speed from simulation comparing with 
experiment 

5. Conclusion

The equation of motion of the urban 
transportation vehicle is derived using Kane’s Method. 
Kane’s Method shows the systematic approach with 
ease to use when dealing with the complicated 
system such as the model in this study. Due to 
nonlinearity of the system, the controller is designed 
using feedback linearization. Lyapunov’s stability 
analysis is utilized to ensure the stability of the 
system with the proposed control law. The modified 
controller is embedded in to microcontroller to handle 
the real vehicle. The controllers well perform their 
capability within the experiment set up after tuning 
with suggestion from the simulation model. After 
testing, the vehicle is capable of stay in the uprising 
position within +/-2 degree. However, in different 
situation such as incline floor plane or slipping floor, 
the results might diverse from the result expressed in 
this research. The refined controller including 
parameter tuning is required before implementation in 
other situation. 
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