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Abstract 
Input shaping is a technique to reduce residual vibration. The technique is based on destructive 

interference of impulse responses, that is, an impulse response can be cancelled by another impulse 
response, given appropriate impulse amplitudes and applied times. Placing the input shaper inside the 
feedback loop in front of the plant offers several advantages including ease of shaper design, elimination 
of vibration induced by sensor noise, handling of hard nonlinearities, and improving performance of 
manual control. However, placing the input shaper inside the feedback loop adds time delays to the 
closed-loop system, which can limit the amount of bandwidth the feedback controller can achieve. Smith 
predictor can remove the effect of the time delays by feeding back a prediction of the future output to the 
controller. In this paper, for the first time, the Smith predictor is applied to an input-shaped flexible plant, 
having Quantitative feedback control as feedback control system. The simulation results show that the 
performance of the closed-loop control is improved significantly for an input-shaped flexible plant. 
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1. Introduction
Input shaping is a technique to reduce 

residual vibration. The technique is based on 
destructive interference of impulse responses, 
that is, an impulse response can be cancelled by 
another impulse response, given appropriate 
impulse amplitudes and applied times. 

The input shaper is frequently placed inside 
the feedback loop for advantages such as ease of 
shaper design, elimination of vibration induced by 
sensor noise, handling of hard nonlinearities, and 
improving performance of manual control. 

However, two important disadvantages are that 
the input shaper inside the feedback loop cannot 
suppress vibration induced by disturbances and 
that the time delay in the input shaper can 
seriously limit the performance of the feedback 
controller. 

In this paper, for the first time, Smith predictor 
is placed inside of the loop together with 
quantitative feedback control. Under perfect 
model assumption, Smith predictor removes the 
effect of the time delay from the feedback loop, 
allowing the feedback controller to be designed 
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without limit from time delay. The quantitative 
feedback control can be designed to meet 
frequency-domain disturbance rejection 
specification. As a result, the proposed system 
can also reject vibration induced by the 
disturbances.  

The proposed system improves the 
disadvantages of the closed-loop input shaping 
whereas still maintains its advantages.  

Simulation on a two-mass rigid-flexible 
system is used to confirm the effectiveness of the 
proposed system. This simulated system 
represents majority of the rigid-flexible systems in 
practice. 

The paper is organized in this way. Section 2 
shows details of the two-mass rigid-flexible 
system including its equations of motion, state-
space model, and transfer functions and provides 
an example of impulse response, which shows its 
flexible behavior. Section 3 discusses advantages 
and disadvantages of closed-loop input shaping 
system and introduces the ZV input shaper. 
Section 4 presents the proposed closed-loop 
input shaping system with Smith predictor and 
quantitative feedback control. The section 
contains details on Smith predictor and simulation 
results by applying the proposed system to the 
rigid-flexible system. Conclusions are given in 
Section 5. 

2. Two-Mass Rigid-Flexible System
Consider a two-mass rigid-flexible system in 

Fig. 1. In general, the system represents two 
entities, connected via a flexible part, which 
encompasses a large majority of actual rigid-
flexible systems. The driving one has an absolute 

position and mass of 
0x  and 

0 ,m  and the driven 
one has 

1x  and 
1.m  

0, ,k c  and c  are spring 
stiffness and two damping constants. f  is the 
control force. The objective is to move both 
masses from the origin to a displacement X  with 
zero residual vibrations and in a shortest time 
possible ,T  that is,  
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Fig. 1 Two-mass rigid-flexible system. 

The equations of motion of the system in Fig. 
1 can be found as 
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The corresponding state-space model with 
output 1x  is given by 
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The corresponding transfer function from 
0x

to 
1x  is given by 
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and from f  to 
0x  is given by 
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Therefore, the transfer function from f  to 1x  is 
given by 
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(1) 

For simulation purpose, let 0 2 kg,m 

1 3 kg,m  10.1kg.s ,c 
1

0 30 kg.s ,c   and 
21kg.s .k   The response 1x  from an impulse 

input f  is shown in Fig. 2, where the effect of 
the flexible mode, with 10.58 rad.sn

 and 
25.8 10 ,    is evident. 

Fig. 2 Impulse response of the two-mass rigid-
flexible system. 

3. Closed-Loop Input Shaping
3.1 Closed-loop input shaping system 

Consider the system in Fig. 3. G  is the 
feedback controller. F  is the prefilter. G  and F  
will be designed from the quantitative feedback 
theory [2]. IS  is the input shaper [3]. For clarity, 
the simplest ZV input shaper is used in this 
paper. Its impulse amplitudes are given by 

21
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and its impulse time locations are given by 
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2
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It was shown by [4] that the input shaper works 
by placing its zeros over the flexible poles of the 
plant. NL  represents hard nonlinearities such as 
deadzone, backlash, saturation, and rate limit. P  
is the plant. , , , ,Ir y n d  and Od  represent 
reference input, plant output, noise, plant-input 
disturbance, and plant-output disturbance. 

Fig. 3 Closed-loop input shaping. 

3.2 Advantages 
The advantages of the closed-loop input 

shaping system in Fig. 3 are as follows: 
1) According to [5], human control of flexible
systems can be improved using the closed-loop 
input shaping system because the input shaper, 
placed in front of the flexible plant, can effectively 
remove the flexibility from the plant. 
2) When plant has hard nonlinearities,
performance of input shaping is degraded. 
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Closed-loop input shaping allows effective remedy 
for this degradation because the input shaper is 
placed directly in front of the plant, so it can be 
relatively easy to adjust [6]. 
3) The input shaper in the closed-loop input
shaping system can suppress vibration induced 
by reference and noise [7]. Consider the 
relationship 
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where the hard nonlinearities NL  are neglected 
for simplicity and 

nP  and 
dP  are numerator and 

denominator of the plant .P  The closed-loop 
system’s flexible poles contained in 

dP  are 
canceled by the zeros of the input shaper IS  in 
the numerator. 
4) It is relatively easy to design the input shaper
when it is placed directly in front of the plant as 
opposed to in front of a closed-loop system. 
3.3 Disadvantages 
1) The input shaper in the closed-loop input
shaping system cannot suppress vibration 
induced by disturbances [7]. Consider two 
relationships 
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The closed-loop system’s flexible poles contained 
in dP  are not canceled by the zeros of the input 
shaper IS  because there is no IS  in the 
numerator. 
2) Input shaper such as the ZV input shaper (2)
has a transfer function [8] 
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When the input shaper is placed in the loop, it 
adds a time delay of 

2dt t  to the system. The 
delay term 2

21
t s
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   can also be viewed as 
unstable or non-minimum-phase zero. According 
to [9], the time delay causes constraints 
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where S  is the sensitivity function, T  is the 
complementary sensitivity function, and 

B  is the 
system bandwidth. The constraints limit the 
performance of the closed-loop system. Besides, 
the unstable zero also leads to instability when 
using high feedback gain since, as feedback gain 
increases toward infinity, the closed-loop poles 
move to the open-loop zeros. 

4. Closed-Loop Input Shaping with Smith
Predictor 

4.1 Smith predictor 
According to [10], a closed-loop system with 

Smith predictor is shown in Fig. 4, where 

0

sP P e   is the plant with time delay ,  0P  is
the plant P  without time delay, G  is the 
controller, P̂  is the model of ,P  and 

0P̂  is the 
model of 0.P
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Fig. 4 Closed-loop system with Smith predictor. 

Assuming perfect models, that is, P̂ P  and 

0 0
ˆ ,P P  the Smith predictor 

0
ˆ ˆP P  results in a 

transfer function 

 

  0

,
1

Y s GP

R s GP




which is equivalent to Fig. 5 where the time delay 
has been moved out of the loop and from the 
characteristic equation. 

Note that when the models are not perfect, 
the time delay is not totally removed from the 
loop. However, there will be less detrimental 
effect from the time delay. 

Fig. 5 Equivalent closed-loop system. 

4.2 Closed-loop input shaping with Smith 
predictor 

By modifying the system in Fig. 4 and 
following [11], the closed-loop input shaping with 
Smith predictor and quantitative feedback control 
is shown in Fig. 6. In our case, P  is the plant (1) 
without time delay, P̂  is its model, and IS  is the 
ZV input shaper (3) with known time delay. 

Fig. 6 Closed-loop input shaping system with 
Smith predictor and quantitative feedback control. 

Assuming perfect model ˆ ,P P  the Smith 
predictor ˆ ˆP IS P  results in a transfer function 

 
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,

ˆ1
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



which is equivalent to Fig. 7 where the ZV 
input shaper has been moved out of the loop and 
from the characteristic equation. 

Fig. 7 Equivalent closed-loop system. 

Therefore, the quantitative feedback control 
can be designed from the plant model P̂  without 
the time delay. After G  and F  are obtained, 
they can be implemented with the Smith predictor 
as in Fig. 6. 
4.3 Simulation results 

Consider the flexible plant (1). This section 
shows design of the proposed system that 
improves the disadvantages in Section 3.3. 

Assume that the two damping constants have 
10 % uncertainties, that is,  0 0.09, 0.11c   

and  27, 33 .c  
The quantitative feedback control [2] ensures 

the following frequency-domain specifications: 
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3 dB,
1
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PG



(4) 

,
1

PGF

PG
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
 (5) 

1
3 dB,

1 PG
 


(6) 

will be met for frequencies 0.05, 0.1, 0.2,  
0.5, 0.8,1, 3, 7,11  rad/s, which are around the 

bandwidth of the nominal plant (1), and for all 
plant uncertainties.   and   are chosen as 
those in Table 1. 

Table. 1 Bounds for tracking specification. 

110 

(rad/s) 
0.5 1 2 5 8 10 

  (dB) 0 0 0 -0.3 -1.5 -3 
  (dB) -0.6 -0.6 -0.8 -1.6 -4 -6 

Note that (4) is the stability margin 
specification that implies gain margin   4.65 dB 
and phase margin   41.46 degrees, (5) is the 
tracking specification, and (6) is the plant-output 
disturbance rejection specification. 

The controller G  was found from loop-
shaping to be 

  144.85 0.01106 0.6241
,

s s
G

s

 
  (7) 

which consists of an integrator and two real 
zeros. The final open-loop shape as well as the 
combined bounds, representing the specifications 
(4) to (6), are shown in Fig. 8. The open-loop 
frequency responses  L j  for all frequencies 
of interest lie in the allowable regions.  

Fig. 8 Bounds on the Nichols chart and final loop 
shape      .L s G s P s  

The prefilter F  was found from loop-shaping 
to be 

  2

0.68132
,

1.167 0.6813
F s

s s


 
(8) 

which consists of two complex poles. 
The frequency-domain specifications (4) to (6)

are simulated for 9 plant models spanning the 
uncertain sets of 0c  and .c  The results are 
shown in Fig. 9, which shows that all 
specifications are met for all plant uncertainties.  
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Fig. 9 Simulation results. (Top)  / 1 .PG PG  

(Middle)  / 1 .PGF PG  (Bottom) 

 1/ 1 .PG  Asterisks mark corresponding 
bounds. 

The closed-loop system in Fig. 6 is simulated 
with P̂  and P  as in (1), G  as in (7), F  as in 
(8), and IS  as in (3) and (2). The system outputs 
y  when the reference input r  is a step function 
for all 9 plant cases are shown in Fig. 10(Top) 
and when the plant-output disturbance Od  is a 
step function are shown in Fig. 10(Bottom). It can 
be seen that the output tracks the shaped 
reference really well without oscillation even when 
the plant is very flexible. The proposed system 
also results in good plant-output disturbance 
rejection. Again, oscillation induced by the 
disturbance is suppressed by the controller. 

Fig. 10 Simulation results. (Top) System output  
y  to a step reference .r  (Bottom) System output 

y  to a step plant-output disturbance .Od  

5. Conclusions
Closed-loop input shaping where the input 

shaper is placed inside the feedback loop is 
known to have two disadvantages. First, the input 
shaper cannot suppress vibration induced by 
disturbances. Second, the time-delay bring about 
by the input shaper limits the performance of the 
feedback controller. 

This paper shows that by using Smith 
predictor. The time delay by the input shaper can 
be removed from the loop. As a result, the 
feedback controller’s performance is not limited 
by it. Moreover, by using the quantitative 
feedback control, disturbance rejection 
specifications can be imposed resulting in a 
feedback control system that can suppress 
vibration induced by the disturbance. 

Note that by using the proposed system, the 
advantages of the closed-loop input shaping listed 
in Section 3.2 are still attained. 

This work assumes perfect model. When the 
model is not perfect, the influence from the time 
delay will not be removed totally from the 
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feedback loop. However, the quantitative 
feedback control should still be used to assess 
the achievable performance of the closed-loop 
system quantitatively. This is the subject of our 
future work. 
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