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Abstract 
Acceleration limit is common in practical actuators. Input shaping is a technique to reduce 

residual vibration by destructive interference of impulse responses, that is, an impulse response can be 
cancelled by another impulse response, given appropriate impulse amplitudes and applied times. In 
application, the input shaper is placed in front of the acceleration limit, followed by the flexible plant. As a 
result, input-shaped velocity command will be altered by the acceleration limit; therefore, the performance 
of the input shaper to reduce the residual vibration of the flexible plant will degrade. Previous work relies 
on optimization routine to obtain a shaper that will not violate the acceleration limit. However, an 
additional constraint on the impulse time locations is required which limits the achievable performance of 
the shaper. In this paper, for the first time, a baseline velocity command is found in closed form for an 
existing input shaper. The shaped velocity command, obtained from passing the baseline velocity 
command to the input shaper, will not violate the acceleration limit. The input shaper, therefore, can 
perform well as designed, unaffected by the acceleration limit. Simulation results show the effectiveness 
of this proposed technique. 
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1. Introduction
Input shaping is a technique to reduce 

residual vibration. The technique is based on 
destructive interference of impulse responses, 
that is, an impulse response can be cancelled by 
another impulse response, given appropriate 
impulse amplitudes and applied times. 

Acceleration limit exists in most actuators in 
practice. The shaped command can be distorted 
by the acceleration limit, causing degradation in 

vibration reduction performance of the input 
shaper. 

Existing researches on input shaping under 
acceleration limit are very few. Ref. [1] and [2] 
studied input shapers under velocity command 
and acceleration upper limit.  

They proposed an additional constraint during 
the design of the unity-magnitude (UM) input 
shaping system in Fig. 1. This additional 
constraint ensures that the resulting shaped 
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velocity command will not violate the acceleration 
limit. The additional constraint is given by 

   2 1 4 3 ,fv a t t t t       

where fv  is the desired final velocity and a  is 
the acceleration limit. 

Fig. 1 UM shaper design to avoid violating 
acceleration limit. 

However, this proposed technique requires an 
optimization routine, which may complicate the 
design. Moreover, the additional constraint may 
limit the performance of the input shaper in 
suppressing the vibration. 

In this paper, the baseline command, which is 
the command input to the input shaper, is 
modified such that the shaped command will not 
violate the acceleration limit.  

The proposed technique is simple. It will work 
with any type of input shapers. It is given in 
closed form so that it does not require 
optimization routine. 

Simulation with a two-mass rigid-flexible 
system, which represents majority of the flexible 
systems in practice, shows the effectiveness of 
the proposed technique in suppressing the 
residual vibration in the presence of the 
acceleration limit. 

This paper is organized in this way. Section 2 
contains derivation of transfer function 
representing the two-mass rigid-flexible system. 
Section 3 presents the ZVD input shaper to be 

used in this work and shows an example of 
performance degradation of the input shaper from 
acceleration limit. Section 4 designs a modified 
baseline velocity command that avoids violating 
the acceleration limit. Conclusions are given in 
Section 5. 

2. Two-Mass Rigid-Flexible System
Consider a two-mass rigid-flexible system in 

Fig. 2. In general, the system represents two 
entities, connected via a flexible part, which 
encompasses a large majority of actual rigid-
flexible systems. The driving one has an absolute 
position and mass of 

0x  and 
0 ,m  and the driven 

one has 
1x  and 

1.m  
0, ,k c  and c  are spring 

stiffness and two damping constants. f  is the 
control force. The objective is to move both 
masses from the origin to a displacement X  with 
zero residual vibrations and in a shortest time 
possible ,T  that is,  

0 0

1 1

0
, .

0
t T t T

x xX
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Gantry crane can be modeled as two-mass 
rigid-flexible system. The cart mass is 0.m  The 
viscous friction at the cart can be modeled by 0.c

The payload is 1.m  The pendulum dynamics are 
modeled by c  and .k  

Flexible joint robot manipulator can also be 
modeled as two-mass rigid-flexible system. The 
motor hub’s inertia is 0.m  The viscous friction at 
motor bearing can be modeled as 0.c  The 
payload is 1.m  The flexible joint is modeled as c  
and .k  
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Fig. 2 Two-mass rigid-flexible system. 

The equations of motion of the system in Fig. 
2 can be found as 

   

   

0 0 0 1 0 1 0 0

1 1 0 1 0 1

,

0.

m x c x x k x x c x f

m x c x x k x x

     

    

The corresponding transfer function from 0x

to 
1x  is given by 

 
 
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and from f  to 0x  is given by 
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(2) 

In most rigid-flexible systems, such as 
cranes, the command input is velocity instead of 
acceleration or force. Therefore, from (1) and (2), 
the transfer function from the velocity command 
v  to 1x  is given by 

 
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 

 

 
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3 2
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(3) 

For simulation purpose, let 0 2 kg,m 

1 3 kg,m   10.1kg.s ,c 
1

0 30 kg.s ,c   and 

21kg.s .k   The response 
1x  from a unit-step 

velocity input v  is shown in Fig. 3, where the 
effect of the flexible mode, with 

10.58 rad.sn
 and 25.8 10 ,   is 

evident. 

Fig. 3 Unit-step velocity response of the two-mass 
rigid-flexible system. 

3. Performance Degradation from
Acceleration Limit 

This section shows that the performance of 
input shaping is degraded by acceleration limit, 
which is present in every practical actuators. 
3.1 ZVD input shaping 

Input shaping is based on destructive 
interference of impulse responses. A good tutorial 
paper is [3]. 

The ratio between the n -impulse response 
amplitude at time nt t  and the single-impulse 
response amplitude at time 

1t t  is given by 

     
2 2
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where V  is the so-called percentage vibration, 
normally used in the literature to quantify the 
residual vibration, n  is the natural frequency of 
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the applied linear system,   is its damping ratio, 

it  is the time the thi  impulse is applied and 
iA  is 

the thi  impulse’s amplitude. 
The amplitudes 

iA  and time locations 
it  of 

the impulse sequence are computed by solving 
the following equations: 

 , 0,nV    (4) 

 ,
0,

n

n

V  







(5) 

1

1,
n

i

i

A


 (6) 

1 0,t  (7) 

which requires the knowledge of n  and .  
Eqs. (4) - (7) are used to solve six unknowns, 

which are the amplitudes and time locations of 
three impulses: 
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This three-impulse input shaper is known in 
the literature as zero-derivative-vibration (ZVD) 
shaper. It was proposed by [4]. 
3.2 Performance degradation from acceleration 
limit 

The simulation result in Fig. 3 is redone. 
However, this time the unit-step velocity 
command is shaped by the ZVD input shaper, 
given by (8) - (11). Fig. 4(Top) contains the 
response 1x  with and without input shaper. Fig. 

4(Bottom) shows the shaped unit-step velocity 
command .sv  It can be seen that, with input 
shaper, the response 

1x  does not vibrate and the 
settling time is improved substantially. 

Fig. 4 (Top) Unit-step velocity response of the 
two-mass rigid-flexible system. Solid line is 
shaped response. Dash line is unshaped 

response. (Bottom) Shaped unit-step velocity 
command. 

However, most actuators in practice have 
acceleration limit. Fig. 5 contains a diagram 
showing input shaping under acceleration limit. 

bv  is the original baseline velocity command, 
which is a step function of a magnitude .fv  sv  is 
the shaped velocity command, a staircase 
function. 

av  is the acceleration-limited velocity 
command. 

Fig. 5 Input shaping under acceleration limit. 
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sv  is designed to suppress residual vibration 
of the plant output 

1.x  However, because of the 
acceleration limit ,v a  where a  is a constant, 

av  is given to the plant instead of .sv  As a 
result, the vibration suppression performance of 
the input shaper is degraded. 

Fig. 6(Top) compares between the plant 
output 

1x  with and without acceleration limit. 
When an acceleration limit 20.1m.sv   exists, 
the vibration suppression performance of the 
input shaper degrades as can be seen from 
increasing oscillation in 

1x  from .av  Fig. 
6(Bottom) provides the baseline command ,bv  
the shaped command ,sv  and the acceleration-
limited command .av  It can be seen that the 
slope of 

av  is limited to 20.1m.s .

Fig. 6 (Top) Unit-step velocity response of the 
two-mass rigid-flexible system. Solid line is 

shaped response. Dash line is response under 
acceleration limit. (Bottom) Unit-step baseline 
velocity command .bv  Shaped command .sv  

Acceleration-limited command .av  

4. Baseline Velocity Command That Avoids
Violating the Acceleration Limit 

In this section, a new baseline velocity 
command that avoids violating the acceleration 
limit is found in closed form. This baseline 
command 

bv  will produce the shaped command 

sv  whose slopes will not exceed the acceleration 
limit .v a  Therefore, 

av  will be exactly the 
same as ,sv  and the performance of the input 
shaper will not be degraded. 

Consider a case when the input shaper has 
two impulses, 1 2.A A  Suppose the baseline 
command 

bv  is modified as a ramp-plus-step 
function as shown in Fig. 7. The ramp slope is 
given by 1 / ,a   where 1a  is the desired final 
velocity and   is the ramp rise time to be 
designed.  

Fig. 7 also shows the convolution result 
between 

bv  and the input shaper’s impulse 
sequence. The shaped command 

sv  will have 
two ramp steps. The ramp rise time   is 
designed to ensure that  

1 1 1 2 ,
a A a A

a  
 

so the slope of sv  will not exceed the 
acceleration limit .a  This procedure in modifying 
the baseline command can easily be extended to 
input shapers having more impulses or negative 
impulses.  

Note that relationships 

1

1 , 1, 2, ..., 1,
i

i i

a A
t t i n

a
     

where n  is the number of impulses, must be 
enforced to ensure that the rise time of each step 
in sv  is always less than the time between the 
step changes in .bv   
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Fig. 7 Convolution between modified baseline 
command and input shaper’s impulse sequence. 

In our simulation example, the ZVD input 
shaper, given by (8) - (11), has 

1 0.2973,A   

2 0.4959,A   3 0.2068,A   
1 0,t 

2 5.4538,t   and 3 10.9076.t   
With an acceleration limit 20.1m.sv a  

and 1

1 1 m.s ,a   the ramp rise time is computed 
as 1 2 / 4.959 s.a A a  

Fig. 8(Bottom) shows the modified baseline 
command 

bv  as well as the corresponding 
shaped command sv  and acceleration-limited 
command .av  It can be seen that bv  has been 
modified such that 

sv  will not violate the 
acceleration limit; therefore, .s av v  The input 
shaper performance will not be degraded 
because the shaped command is not distorted by 
the acceleration limit. Fig. 8(Top) contains the 
original, unmodified baseline command 

bv  along 
with its corresponding sv  and av  for comparison. 

Fig. 8 Unit-step baseline velocity command .bv  
Shaped command .sv  Acceleration-limited 

command .av  (Top) Original baseline command. 
(Bottom) Modified baseline command. 

Fig. 9 shows the system output 1x  when the 
original baseline velocity command 

bv  is used 
and when the modified baseline velocity 
command bv  is used. It can be seen that, with 
modified baseline command, the residual vibration 
is suppressed even under acceleration limit. This 
is because the modified command 

bv  is designed 
such that the modified shaped command sv  is 
not distorted by the acceleration limit. 

Fig. 9 Unit-step velocity response of the two-mass 
rigid-flexible system. Solid line is the result from 
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modified .bv  Dash line is response from the 
original, unmodified .bv  

More steps can be added to the modified 
baseline command. Fig. 10 shows a modified 
baseline command 

bv  with two steps. The two 
steps are placed at the impulse time locations 

1t

and 
2 .t  Fig. 10 also contains the convolution 

between the modified baseline command and the 
input shaper’s impulse sequence. 

Fig. 10 Convolution between modified baseline 
command with two steps and input shaper’s 

impulse sequence. 

There are three unknowns: 
1 2, ,a a  and .  

They can be solved from relationships: 

1 2 ,a a V 

1 1 1 2 2 1 ,
a A a A a A

a


 
 

where V  is the desired final velocity and a  is 
the acceleration limit. 

Modified baseline command with additional 
steps provides more robustness to parameter 
uncertainty. 

5. Conclusions

Acceleration limit exists in most actuators in 
practice. The shaped command can be distorted 
by the acceleration limit resulting in degradation 
in vibration reduction performance. 

For the first time, this paper proposes a 
modification to the baseline command so that the 
shaped command will not violate the acceleration 
limit. 

It is shown by simulation with a rigid-flexible 
model that, under acceleration limit, the modified 
baseline command is not affected by the 
acceleration limit and can produce response 
without vibration. 

Future work includes applying the proposed 
technique to actual hardware. 
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