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Abstract 
Input shaping is a technique to reduce residual vibration by destructive interference of impulse 

responses, that is, an impulse response can be cancelled by another impulse response, given appropriate 
impulse amplitudes and applied times. The input shaper is designed using the system mode parameters, 
which are natural frequencies and damping ratios. Therefore, its performance is affected by the 
inaccuracy of these system parameters. In this paper, for the first time, a state-feedback backstepping 
controller is applied to a flexible system to match the closed-loop system with a known reference model. 
The input shaper is then designed using the reference model’s parameters, which are accurate. The 
backstepping controller can handle unmatched uncertainty. The advantages of the proposed technique 
are as follows: the flexible system is allowed to be time-varying or nonlinear, the input shaper can have 
short duration because it does not have to be robust, vibration induced by uncertainty can be reduced. 
Simulation results confirm the effectiveness of the proposed technique. 
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1. Introduction
Input shaping technique is used to reduce 

residual vibration, which is the vibration after the 
system reaches its destination, from point-to-point 
movement of flexible systems. Input shaping was 
originated by [1] and was made robust by [2]. 
Tutorial materials are available in [3]. 

Input shaping is designed from the knowledge 
of the mode parameters (natural frequency and 
damping ratio) of the flexible system. Therefore, 
its performance depends on the accuracy of this 
knowledge. When the plant model is not accurate 
or uncertain, the performance of the input shaper 
degrades. 

Several works in the past were proposed to 
solve this problem. They include robust input 
shaping [4], [5], and [6] and adaptive input 
shaping [7], [8], [9], and [10]. Robust input 
shapers add more impulses into the impulse 
sequence representing the input shaper. 
Additional impulses results in longer settling time. 
Adaptive input shaping, where the input shapers 
adapt to the changing mode parameters, are 
usually complicated, can cover small range of 
parameter uncertainty, and may not be 
guaranteed to converge. 

Another way to solve the problem is by using 
feedback control together with input shaping. The 
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feedback control is designed to match the closed-
loop system to a reference model, so that the 
input shaper can be designed from mode 
parameters of the reference model which are 
known precisely.  

Ref. [11] proposed an input shaping method 
that increases the robustness of the design while 
does not lengthen the shaper duration. An 
adaptive control scheme was proposed to adapt a 
feedback controller on-line so that the closed-loop 
system matches a fixed reference model. The 
input shaper is then designed according to the 
natural frequency and damping ratio of the 
reference model. However, this work is limited to 
a second-order plant and a simple lead/lag 
controller. 

Ref. [12] presented a model reference input 
shaping scheme using discrete-time sliding mode 
control for model matching. The sliding mode 
control has two phases: reaching and sliding 
phases. An intelligent system was used during 
the reaching phase.  

In this paper, for the first time, backstepping 
control [13] is applied to match the closed-loop 
system to a reference model. The backstepping 
control breaks the design for the whole system 
into the designs for the subsystems. It therefore 
can handle unmatched uncertainties and 
disturbances naturally. In this work the plant 
parameters, which are damping and spring 
constants, are assumed to be ten-time 
uncertainty. Moreover, the uncertainty can exist in 
every part of the system. It was shown through 
simulation that the proposed control system can 
suppress the residual vibration of the flexible 

system effectively even under large amount of 
model uncertainty. 

This paper is organized in this way. Section 2 
contains model of a two-mass rigid-flexible 
system to be used in simulations. Section 3 
presents the proposed technique, which is the 
model reference input shaping using state-
feedback backstepping control. It contains 
backstepping control, using backstepping in 
model matching, and zero-vibration (ZV) input 
shaping. Section 4 discusses simulation results 
comparing open-loop input shaping to the 
proposed technique. Section 5 are conclusions. 

2. Two-Mass Rigid-Flexible System
In this work, a two-mass rigid-flexible system 

in Fig. 1 is considered. In general, the system 
represents two entities, connected via a flexible 
part, which encompasses a large majority of 
actual rigid-flexible systems. The driving one has 
an absolute position and mass of 0s  and 0 ,m  
and the driven one has 1s  and 1.m  0, ,k c  and c  
are spring stiffness and two damping constants. 
f  is the control force. The objective is to move 

both masses from the origin to a displacement 
X  with zero residual vibrations and in a shortest 
time possible .T  

Fig. 1 Two-mass rigid-flexible system. 

The equations of motion of the system in Fig. 
1 can be found as 
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In most rigid-flexible systems, such as 
cranes, the command input is velocity v  instead 
of acceleration or force .f   

The corresponding state-space model is then 
given by 
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where 1 1,x s 2 1,x s 3 0 ,x s 4 0 ,x s  and 
.f v

For simulation purpose, let 0 2 kg,m 

1 3 kg,m  10.1kg.s ,c 
1

0 30 kg.s ,c   and 
21kg.s .k   The response 1x  from a unit-step 

velocity input v  is shown in Fig. 2, where the 
effect of the flexible mode, with 

10.58 rad.sn
  and 25.8 10 ,   is 

evident. 

Fig. 2 Impulse response of the two-mass rigid-
flexible system. 

3. Model Reference Input Shaping Using
State-Feedback Backstepping Control 

This section discusses the use of a simple 
state-feedback backstepping control for model 
matching. 
3.1 State-feedback backstepping control 

The flexible plant model (1) can be written in 
the so-called strict-feedback form 
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(2) 

where if  and ig  are functions of states. Note 
that, to put (1) in the strict-feedback form, the 
term  1 4/c m x  is neglected. It will be treated as 
plant uncertainty, which will be handle by the 
control system. 

State-feedback backstepping controller for the 
system (2) can be described by a diagram in Fig. 
3. 1dx  is a reference input. With the system 
output 1,y x  a virtual control 2dx  that achieves 
tracking of 1x  to 1dx  is computed. With the 
system state 2 ,x  a virtual control 3dx  that 
achieves tracking of 2x  to 2dx  is computed. 
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Similarly, 4dx  and f  are computed. f  is the 
actual control given to the plant. 

Fig. 3 State-feedback backstepping control. 

Because the backstepping control creates a 
virtual control for every subsystem 

1,i i i ix f g x    it can handle model uncertainty 
and disturbance in the subsystem, that is, it can 
effectively handle “unmatched” uncertainty and 
disturbance. 
3.2 Model matching 

The proposed system is shown in Fig. 4. The 
dash box contains closed-loop system. The 
backstepping control is aimed to reduce the 
difference between the plant output y  and the 
reference model output .my  As a result, the 
closed-loop system, which is a mapping from the 
shaped velocity command v  to y  will be close 
to the known reference model, which is a 
mapping from v  to .my  The input shaper then 
can be designed from mode parameters of the 
reference model, which are exactly known. 

Fig. 4 Proposed model reference input shaping 
using state-feedback backstepping control. 

First, consider the first subsystem in (2), 
which is 

1 1 1 2.x f g x   Let errors be 

1 me y y   and , 2, 3, 4.i i ide x x i     The 
error dynamic of the first subsystem is then given 
by 
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Letting the virtual control 2dx  be 

 1

2 1 1 1 1 1, 0,d mx g f y c e c     (4) 

(3) becomes 
2

1 1 1 1 1 2.V c e g e e  

Similarly, for the second subsystem in (2), 
which is 2 2 2 3,x f g x   the error dynamic is 
given by 

2 2 2 3 2 3 2 .d de f g e g x x   

The derivative of a Lyapunov function 
  2

2 1 21/ 2V V e   is given by 

 2 1 2 2 2 3 2 3 2 .d dV V e f g e g x x        (5) 

Letting the virtual control 3dx  be 

 1

3 2 2 2 2 2 1 1 2, 0,d dx g f x c e g e c       (6) 

(5) becomes 
2 2

2 1 1 2 2 2 2 3.V c e c e g e e    (7) 

For the third subsystem in (2), which is 

3 3 3 4 ,x f g x   the virtual control 4dx  and the 
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derivative of the Lyapunov function 
  2
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Finally, for the last subsystem, which is 
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From the Lyapunov’s stability theorem, all errors 
will go to zero asymptotically. 
3.3 ZV input shaping 

Input shaping is based on destructive 
interference of impulse responses. The ratio 
between the n -impulse response amplitude at 
time 

nt t  and the single-impulse response 
amplitude at time 1t t  is given by 
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where V  is the so-called percentage vibration, 
normally used in the literature to quantify the 
residual vibration, n  is the natural frequency of 
the applied linear system,   is its damping ratio, 

it  is the time the thi  impulse is applied and iA  is 
the thi  impulse’s amplitude. 

The amplitudes iA  and time locations it  of 
the impulse sequence are computed by solving 
the following equations: 
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which requires the knowledge of 
n  and .  

Eqns. (10) - (12) are used to solve four 
unknowns, which are the amplitudes and time 
locations of two impulses: 
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This two-impulse input shaper is known in the 
literature as zero-vibration (ZV) shaper. 

4. Simulation Results
4.1 Open-loop input shaping 

Consider first the open-loop input shaping as 
shown in Fig. 5. The flexible system is given by 
(1) with nominal parameter values. The ZV input 
shaper is given by (13) – (15). The natural 
frequency and damping ratio are computed from 
using nominal parameter values.  

Fig. 5 Open-loop input shaping. 

The baseline velocity command bv  is a 
square wave of magnitude one as shown in Fig. 
6(Top). The resulting shaped velocity command 
v  is a stair-case command as shown in Fig. 
6(Bottom). 
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Fig. 6 (Top) Baseline velocity command. (Bottom) 
Shaped velocity command. 

The resulting flexible plant output 1y s  is 
shown in Fig. 7(Top). It can be seen that, when 
the plant model is perfect, using the ZV input 
shaper in open-loop perfectly cancels the residual 
vibration in the output. 

However, when the plant model is not perfect. 
As an example, a number 1.5 is deliberately 
multiplied to all the damping ratios and the spring 
constant. The ZV input shaper is unchanged. The 
output when the model is uncertain is shown in 
Fig. 7(Bottom). It is obvious that there is 
substantial residual vibration in the plant output. 

Fig. 7 (Top) Plant output when the plant model is 
perfect. (Bottom) Plant output when the model is 

uncertain. 

4.2 Model reference input shaping using state-
feedback backstepping control 

In this section, the proposed control system in 
Fig. 4 is applied. The backstepping controller 
matches the closed-loop system from v  to y  to 
the reference model from v  to .my  As a result, 
the input shaper, which is designed from mode 
parameters of the reference model, is almost 
unaffected by the uncertainty in the flexible plant. 
Besides, the flexible plant can be time-varying or 
nonlinear. 

From the flexible plant (1) and the strict-
feedback form (2), 

if  and 
ig  are given by 
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Choose the controller constants 1,ic 

1, 2, 3, 4.i   The state-feedback backstepping 
control law is given by (9) with virtual control laws 
(4), (6), and (8). The reference model is the plant 
(1) with nominal parameter values. A simulation 
was written using a sampling period of 5 ms. 

Fig. 8 shows the states and their desired 
values when a number 10 is deliberately 
multiplied to all the damping ratios and the spring 
constant to simulate uncertainty in the parameter 
values. The desired values are in dash lines 
whereas the states are in solid lines. 
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Fig. 8 States and their desired values. (a) System 
output 1 1x y s   and its desired value .my  (b) 
State 

2x  and its desired virtual control 
2 .dx  (c) 

State 
3x  and its desired virtual control 

3 .dx  (d) 
State 

4x  and its desired virtual control 
4 .dx

It can be seen from Fig. 8 that all states are 
bounded and can follow their desired values 
closely even when large parameter uncertainties 
are present. 

5. Conclusions
A model reference input shaping technique is 

presented. State-feedback backstepping control is 
used to match the closed-loop system to a 
reference model. As a result, the input shaper 
can be designed from mode parameters of the 
reference model, unaffected by the uncertainty in 
the plant parameters. The proposed input shaping 
system is shown via simulation on a practical 
flexible system that it can maintain good input 
shaping performance even when the plant 
uncertainty is substantially large. 

Future work includes rejecting vibrations from 
external disturbances by sliding mode controller, 
using intelligent systems to identify plant if it is 
unknown, using observer to estimate unmeasured 
states, getting rid of the derivative terms in the 
control law, and implementing the proposed 
technique with actual flexible systems. 
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