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Abstract 
In general, the rate of heat conduction in materials depends on a thermal conductivity of a material. The 

high value of thermal conductivity is mean the heat energy can pass through the materials faster than the low value 
of thermal conductivity materials. However, the thermal conductivity is a kind of a variable parameter due to the 
value temperature in materials. For this reason, the variation of thermal conductivity value is a main source of 
uncertainty in heat conduction control problem. This work proposed the method of distributed parameter system for 
separating the aluminum rod into semi dimension then, develop the state space model of low thermal conductivity 
value and high thermal conductivity case. Each state space models use for synthesizing the model predictive 
control algorithm in each of thermal conductivity value. The both of model predictive control in each thermal 
conductivity value are combined into the multi-model predictive controller by using weighting method. Simulation 
result shows the benefit of a multi-model predictive controller in the case of a wide range operating condition of 
the conduction process better than the conventional model predictive control.  

Keywords: Multi-model predictive control, Distributed parameter system, Heat equation 

1. Introduction
In heat conduction process, the rate of heat 

transfer through a material depend on the value of 
thermal conductivity. Therefore, the high value of 
thermal conductivity is mean the heat energy can 
transfer through the material faster than the low value 
of thermal conductivity material. However, in reality the 
thermal conductivity is a kind of variation parameter. 
When the temperature of a material has reached the 
high temperature, the value of thermal conductivity has 
increased depend on material temperature. Therefore, 
in the control process of heat transfer through the 

material is a kind of an uncertain system due to 
thermal conductivity. 

The heat equation problem is a kind of partial 
differential equation (PDE) sometimes known as 
parabolic or hyperbolic equation. 

Several techniques have been proposed in 
the literature for controlling a heat conduction problem, 
for example, distributed parameter control, sliding 
mode control, PDE back stepping control, gain 
scheduling control and predictive control. 

In [1] have proposed the distribute parameter 
control method and implement to a batch fluidized bed 
dryer. In this proposed, the researchers is developed 
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a lumped model base on the heat and mass transfer 
between solid and gas in the bed. Then, the distributed 
parameter model is used to predict the behavior of the 
system. 

In [2] study the design of feedback control of 
hyperbolic distributed parameter systems. The method 
based on the first order hyperbolic partial differential 
equation using the method of characteristics. 
Simulation results show that this method can provide 
effective control for the systems modeled by a scalar 
PDE as well as a system of PDE.  

In [3] have been proposed the method of 
sliding mode boundary control of a one-dimensional 
unstable heat conduction system modeled by a 
parabolic partial differential equation. The simulation 
result of this paper shows the ability of sliding mode 
control for handling the uncertainty of boundary 
condition.  

In [4] study the structure of a controller based 
on back stepping control for controlling the one-
dimensional heat equation with time-varying domain. 
From the simulation result, the proposed method of the 
full state-feedback control law is provided for the 
application of temperature regulation in heat 
conduction process. 

In [5] have been proposed the novel fuzzy 
mixing gain scheduling (FMGS) strategy that is based 
on the idea of fuzzy weighting of local model values of 
certain control parameters depend on thermal load in 
the process of heat transfer thought the buildings wall 
material. The experiment shows the excellent 
performance and effectiveness of the proposed control 
in a heat conduction in buildings material. 

In [6] have proposed the predictive control of 
parabolic PDE with unsteady state and flux boundary 
control. From the simulation result, the proposed 
method has ability to enforce stability in the infinite-
dimensional closed-loop system. 

From the literature, many researchers 
developed control based on heat transfer model or 

heat equation such as, model predictive control, full 
state feedback and distribute parameter control. The 
advantages of model-based control are reduced 
process setting time, the controller can reduced the 
energy input to the system depend on the accuracy of 
mathematic model and the model of system can be 
developed into prediction form for calculating the 
future of output behavior.     

However, the main drawback of model-based 
controller is a variation of a system parameter due to 
operating condition.  

For improving the performance of model- 
based controller in a wide range operating region, this 
paper proposed the idea of multi-model predictive 
control by using the fuzzy weighting and applied that 
to the heat conduction process in aluminum rod. 

The paper is organized as follows. Firstly, the 
mathematic model based on heat conduction is 
described. Secondly, the design of model predictive 
control from the information of the mathematic model. 
Thirdly, fuzzy weighting method of weight the local 
model predictive control into global controller. Next, the 
simulation result is given to confirm the proposed 
method by comparison between conventional and the 
proposed method. Finally, the conclusion of this work 
is presented in the final section. 

2. Mathematic model
 This paper uses a simple case of heat 

conduction in aluminum rod as shown in Fig. 1 and 
assume the problem is a one-dimension heat 
transfer. 

 Fig. 1 One-dimension heat conduction problem. 
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 The heat source is applied to a rod at position 
x = 0  and the output variable is a temperature at a 
tip of the rod x = L . The heat stored in aluminum rod 
is transfer to ambient according to convection mode. 
The thermal properties of aluminum can be seen in 
Table 1. 

Table 1. Thermal properties of aluminum 
Thermal 
property 

value unit 

k 215 2W m K

PC 897 kJ kg K

 2702 3kg m

The aluminum rod is divide into five-part, 
when ΔL=0.2  and L=1 . The cross section area 
(Ac) of aluminum rod is assumed to 0.0314. The 
mathematic model in each part of aluminum rod can 
be developed by using heat balance equation [7] as 
shown in Eq. (1). 

          st in outΔE = E  - E (1) 

When stΔE an energy is stored in control 

volume in each part of aluminum rod, inE  is a heat 

energy input to the control volume and outE  is a heat 
energy output from the control volume. Fig. 2 is show 
a heat balance in the first section of aluminum rod. 

Fig. 2 Heat balance in the first part of aluminum rod. 
The mathematic model of each part in 

aluminum rod can be written as Eqs. (2) – (6). 

dT1(t)

dt
=  −a11T1(t) + a12T2(t) + b11u(t) 

 +b12T∞(t)   (2) 

dT2(t)

dt
=  a21T1(t) − a22T2(t) + a23T3(t) 

 +b22T∞(t)   (3) 

dT3(t)

dt
=  a32T2(t) − a33T3(t) + a34T4(t) 

 +b32T∞(t)   (4) 

dT4(t)

dt
=  a43T3(t) − a44T4(t) + a45T5(t) 

 +b42T∞(t)        (5) 

dT5(t)

dt
=  a54T4(t) − a55T5(t) + b52T∞(t)   (6) 

When all of the parameters in Eqs. (2) – (6) 
can be shown in Eqs. (7) – (24). 

  a11 = 1 CP(L kAc⁄ + 1 hAc⁄ )⁄    (7) 
  a12 = 1 CP(1 hAc⁄ )⁄          (8) 
 a21 = a12         (9) 

   a22 = 1 CP(2 L kAc⁄ + 1 hAc⁄ )⁄      (10) 
 a23 = a12           (11) 

   a32 = a12          (12) 
   a33 = a22         (13) 
   a34 = a12          (14) 
    a43 = a12   (15) 

 a44 = a22      (16) 
 a54 = a12    (17) 
 a55 = a22    (18) 

    b11 = 1 CP(L kAc⁄ )⁄    (19) 
  b12 = 1 CP(1 hAc⁄ )⁄     (20) 

    b22 = b12    (21) 
    b32 = b12   (22) 
    b42 = b12   (23) 
    b52 = b12   (24) 

When h  is convection heat transfer 
coefficient of ambient air. The convection coefficient in 
this work is set to 20 W m K   
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The discrete system matrix  kc1A  and 

control input matrix  kc1B in the case of a thermal 
conductivity coefficient in Table 1 can be written as Eq. 
(25) and Eq. (26), respectively.   

kc1

0.993 0.015 0.022 0.015 0.08

0.021 0.995 0.021 0.022 0.01

A 0.021 0.021 0.995 0.021 0.02

0.015 0.021 0.021 0.996 0.02

0.083 0.015 0.022 0.021 0.99

 
 
 
 
 
 
  

(25) 

kc1

0.04 0.01

0.04 0.01

B 0.03 0.01

0.01 0.01

0.07 0.02

 
 
 
 
 
 
  

               

(26) 

When the temperature of the material has 
reach100 C , the thermal conductivity of a material 

has increase to 245 2W m K [10]. Therefore, the 

discrete system matrix  kc2A  and control input 

matrix  kc2B in the case of high thermal conductivity 
coefficient can be seen in Eq. (27) and Eq. (28), 
respectively.    

kc2

0.992 0.025 0.032 0.026 0.02

0.025 0.994 0.025 0.032 0.03

A 0.031 0.025 0.995 0.025 0.03

0.026 0.032 0.025 0.995 0.03

0.016 0.026 0.032 0.025 0.99

 
 
 
 
 
 
  

(27) 

kc2

0.005 0.0165

0.063 0.0165

B 0.053 0.0165

0.033 0.0165

0.017 0.0165

 
 
 
 
 
 
  

                              (28) 

The output matrix  C  and distribute matrix 

 D  can be seen in Eq. (29) and Eq. (30), 
respectively.   

1 0 0 0 0

0 1 0 0 0

C 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 
 
 
  

                               (29) 

 
0 0 0 0 0

0 0 0 0 0

D 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 
 
 
 
 
 
  

                              (30) 

 The model predictive controller is designed 
based on mathematic model in the case of low thermal 
conductivity and high thermal conductivity. 

3. Controller design
In this section, we present the basic of model 

predictive control for the unfamiliar readers. The step 

of model predictive control in this section was followed 

[8] in which the readers will find more details. 

 Based on a measurement signal obtained at 

current time step k , the controller will predict the

sequence of control input from current time step k  to 

future control input time step Ck+N  as shown in Fig. 

3(b). The sequence of control input is used to bring 

the prediction output  ŷ t k  from the current time 

step k  to meet the reference trajectory  r t k  at 

coincidence point in future perdition output time step 

Pk+N  as shown in Fig. 3(a). In the real process, only 

the first control input from the control sequence is 

applied to making a new measurement signal. 
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The algorithm cycle is repeated for step k+1

and so on until the measurement signal meets set-

point trajectory  s t k .  Since the future perdition 

output time step PN  is remains the same length, but 

slides along by one sampling interval at each time 

step. This algorithm known as receding horizon. The 

signal  fŷ t k  is the predicted free response, 

which is the response of the prediction model if the 

future control input trajectory remains at the latest 

value  u k-1 .  

The linear model of model predictive control 

can be written in state-space form as 

     kci kcix k+1 =A x k +B u k          (31)              

 When i = 1 is mean the model of heat rod at 

low thermal conductivity and i = 2 is mean the model 

at high thermal conductivity. 

Fig. 3 Model predictive control basics: (a) The 

prediction output, (b) The sequence of control input               

The variable x  and u are state vector and 

control input. The parameters kciA  and kciB are 

plant matrix and control input matrix, respectively. 

The output equation can be written as 

     y k =Cx k +Du k               (32) 

Where y  is output vector and C  and D

are output matrix and disturbance matrix, respectively. 

The designs of a model predictive control 

using the difference of the state-space form so, taking 

a difference operation on both sides of state-space 

equation. The difference of state-space form can be 

written as 

     
kci kci

Δx k+1 =A Δx k +B Δu k    (33) 

The input to state-space model is  u k . 

The next step is to connect  x k to the output 

equation  y k . Therefore, define a new state 

variable vector is chosen be 

                   
T T

x k = Δx k   y k 
            (34)          

The difference of an output equation can be 

shown as 

     y k+1 -y k =CΔx k+1        (35)             

The augmented model, which is a state-

space model with embedded integrator, will be used in 

the design of model predictive control by putted the 

difference of the state-space and the difference of an 

output equation together leads to following state-space 

model as    

 

 

 

 

 

 

 

   
 

 

x k+1 x k
A B

T
kiki

kiki

C

Δx k+1 Δx k BA 0
= + Δu k

CBCA 1y k+1 y k

Δx k
y k = 0 1

y k

 
                         
  
  
    

 (36)                                             

The future control input is denoted as 

          i i i CΔu k ,Δu k +1 , ,Δu k +N +1     (37)

Where CN  is the control horizon, which is 

the number of parameters used to capture the future 

control trajectory, and the future state variables are 

predicted for PN  step. Where PN  is called the 

prediction horizon. This work denotes the future state 
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variables as 

     

 
i i i i i i

i P i

x k +1 k , x k +2 k , x k +m k

, ,x k +N k
(38) 

Where  i ix k +m k  is the prediction state variables 

at ik +m time step with given current plant information

ik . The control horizon CN  is chosen to be less 

than or equal to the prediction horizon PN . 

 Based on the augmented state-space model 

system matrix A , control input matrix B  and the 

output matrix C , the future state variables are 

calculated sequentially using the set of future control 

parameters as 

     

     

   

 

     

 

 

P P

P

P c

i i i i

i i i i i

2

i i

i

N N 1

i P i i i

N 2

i

N N

i c

x k +1 k =Ax k +BΔu k

x k +2 k =Ax k +1 k +BΔu k 1

=A x k +ABΔu k

BΔu k 1

x k +N k =A x k +A BΔu k

+A BΔu k 1 + +

+A BΔu k N 1









 



 

(39) 

The set of prediction output variables is 

calculated sequentially as   

     

     

 

     

 

 

P P

P

P c

i i i i

2

i i i i

i

N N 1

i P i i i

N 2

i

N N

i c

y k +1 k =CAx k +CBΔu k

y k +2 k =CA x k +CABΔu k

CBΔu k +1

y k +N k =CA x k +CA BΔu k

+CA BΔu k 1

+ +

+CA BΔu k N 1











 

(40)                

Define the prediction states as 

     
T

i i i i i P iX= y k +1 k  y k +2 k , ,y k +N k 
 

 (41)                                                    

Define the future control input as 

     
T

i i i CU= Δu k  Δu k 1 , ,Δu k +N -1   (42) 

The dimension of X is PN  and the 

dimension of U  is CN .  The sequent of output 

variables can be rewritten into a compact matrix form 

as 

       X k =FX k U k             (43) 

The matrix F can be written as 

P

2

N

CA

CA
F=

CA

 
 
 
 
 
 

          (44) 

The matrix   can be written as 

P cP P P

2

N -NN -1 N -2 N -3

CB 0 0 0

CAB CB 0 0

Φ= CA B CAB CB 0

CA B CA B CA B CA B

 
 
 
 
 
 
  

(45)                                              

This paper define the cost function 

    J X k ,U k that reflects the control objective as 

            T TJ X k ,U k =X k QX k +U k RU k (46) 

Where the first term is represented to the 

objective of minimizing the prediction states while the 

second term reflects the consideration given to the 

size of the future control input when the cost function 

is made to be as small as possible. The weight 

matrix Q  and R are diagonal matrix for tuning the 

closed-loop performance. Substitution the compact 

form of output variables into the cost function and 

uses the first derivative as 

    
     T T

DJ X k ,U k
=2F QFX k +2 F QF+R U k

DU
(47)            
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The optimal solution of the control signal can 

be determine by setting the first derivative to zero, so 

the optimal control signal can be shown as 

     
-1

T TU k = Φ QΦ+R Φ QFX k       (48)                                                                              

The state feedback gain in the form of 

model predictive control can be written as 

  
CN

-1
T T

mpcK = 1 0 0 Φ QΦ+R Φ QF  (49)                                                                   

The state feedback gain in the form of 

model predictive control is used to implement for 

controlling of heat conduction in rod. 

4. Fuzzy weighting method
The multi-model predictive controller share 

the effect of local controller from low value and high 
value of thermal conductivity into global controller 
depend on the average temperature in aluminum rod 
as shown in Fig. 4.   

Fig. 4 The diagram of multi-model predictive 
controller in aluminum rod. 

From Fig. 4, the average temperature is 
calculated from temperature value in each part of 
aluminum rod. The average temperature is used to 
adjust the effect of each local controller according to 
the membership function as shown in Fig. 5. 

Fig. 5 Membership function of multi-model predictive 
controller. 

From Fig. 4, the controller MPC1 is designed 
for controlling a low value of thermal conductivity. The 
system matrix from Eq. (25) and control input matrix 
from Eq. (26) used to calculate the state feedback gain 
of local model 1 by using Eq. (49). The state feedback 
gain of MPC2 is calculated from Eq. (49) by using the 
system matrix and control input matrix from Eq. (27) 
and (28), respectively.  

From Figure 5, the value of the weight in each 

thermal conductivity can be calculated according to the 

average value of temperature from each part of an 

aluminum rod. The weight1 is a weight in the case of 

low value of thermal conductivity and the weight2 is 

the weight of high value of thermal conductivity. The 

first weight condition can be written as Eq. (50) 

according to the membership function in Fig. 5, when 

an average temperature below 0 C

1 2w = 1, w 0           (50) 

The second weight condition, when the range 

of an average temperature operates between 0 C  

and 100 C . The weight of each local controller is 

share as 

ave
1 2 1

T -100
w , w 1 w

0-100
             (51) 

Where aveT  is an average temperature of 
aluminum rod. The control effort of multi-model 

predictive control  MMPCu  can be calculated from 
the effect of the local controller as shown in Eq. (52). 

   MMPC 1 2u = w ×MPC1 + w ×MPC2    (52) 

5. Simulation result
To demonstrate the performance of the 

proposed control system, this work uses multi-model 
of heat conduction in aluminum rod. The state 
equation of multi-model can be written as 

     
2 2

i kci i kci

i=1 i=1

x k+1 = w A x k + w B u k
   
   
   
  (53) 
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The tip temperature of aluminum rod  5T   as 
shown in Fig. 4 is a control parameter. In the 
simulation study, this work uses two reference signal 
of a tip temperature at 60 C for the first 7000 second 
and the reference signal is shifted to 80 C  for the 

second part of the simulation as shown in Fig. 6. Fig. 
7 is show the average temperature of aluminum rod 
7(a) and weight of multi-model controller 7(b). 

Fig. 6. (a): Temperature profile in each part of aluminum rod when using multi-model predictive control as a 
controller, (b): Control input signal.   

Fig. 7. (a): Average temperature of aluminum rod, (b): The dynamic of the weight value. 
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 From Fig. 6(a), the tip of aluminum rod  5T

can track the two-state reference signal. The 

temperature of a first part of aluminum rod  1T  is 
reach to the maximum temperature at 160 C , when 
the reference signal is changed to 80 C . From Fig. 

7(b), the system became local model 1  kc1 kc1A ,B

at the beginning of the simulation. Then, the 

percentage of local model 1  kc1 kc1A ,B  is 
decreasing and the percentage of local model 2 

 kc2 kc2A , B  is increasing depend on the average 
temperature of aluminum rod. When the average 
temperature of aluminum rod is reached the 
temperature at 50 C . The weight of local model 1 

 kc1 kc1A ,B  and local model 2  kc2 kc2A , B  are 
share the dynamic together at 50 % or

1 2w w 0.5  . The weight of local model 2 
become prominent and the weight of local model 2 
become inferior according to weighting condition as 
shown in Eq. (51), where the average temperature of 
an aluminum rod is high.  The control effort according 
to Eq. (52) for controlling the tip temperature of 
aluminum rod is shown in Fig. 6(b). 

Fig. 8(a) is shown a comparison between the 
tips of aluminum rod temperature, when using 
difference controller algorithm. The temperature 
response in difference controller is same, when system 
operates at the first reference temperature as shown 
in Fig. 8(a). When the temperature reference is 
changed to 80 C , the response of temperature at tip 
location by using multi-model predictive control as a 
controller is better than the response of conventional 
model predictive control in term of overshoot and 
steady-state error as shown in Fig. 8(a). The 
magnitude of control input signal, when using multi-
model predictive control as a controller is less than 
conventional model predictive control as shown in Fig. 
8(b).        

5. Conclusion
From simulation result, the multi-model 

predictive controller based on the model predictive 
controller in each operating region can reduce the 
disadvantage behavior of the system such as, 
overshoot, rise time and steady-state error according 
to wide range operating condition.   

Fig. 8. (a): The temperature response of tip location of aluminum rod when using multi-model predictive controller 
(solid-line) and comparison with conventional model predictive control (dot-line), (b): Control input signal of multi-
model predictive controller (solid-line) and comparison with conventional model predictive control (dot-line).

894



The 29th Conference of The Mechanical Engineering Network of Thailand 
        1st-3rd July 2015, Nakhon RatchasimaDRC-27 

6. References
[1] Javier, A., Stephen, R., Haigang, G., Wuquiang, Q. 
and Rambail, S. (2009). Distributed parameter control 
of a batch fluidised bed dryer, Control Engineering 
Practice, vol.17, April 2009, pp. 1096 -1106. 
[2] Shang, H., Forbes, J. and Guay, M. (2005). 
Feedback control of hyperbolic distributed parameter 
systems, Chemical Engineering Science, vol.60, 
September 2004, pp. 969-980. 
[3] Cheng, M., Radisavljvevic, V. and Chung, W. 
(2011). Sliding mode boundary control of a parabolic 
PDE system with parameter variations and boundary 
uncertainties, Automatica, vol. 47, December 2010, 
pp. 381-387. 
[4] Izadi, M., Abdolahi, J. and Dubljevic, S. (2015). 
PDE backstepping control of one-dimensional heat 
equation with time-varying domain, Automatica, 
vol.54, January 2015, pp. 41 – 48. 
[5] Krzaczek, M. and Kowalczuk, Z. (2012). Gain 
Scheduling Control applied to Thermal Barrier in 
systems of indirect passive heating and cooling of 
buildings, Control Engineering Practice, vol. 20, July 
2012, pp. 1325 – 1336. 
[6] Dubljevi, S. and Christofides, P.D. (2006). 
Predictive control of parabolic PDEs with boundary 
control actuation, Predictive control of parabolic PDEs 
with boundary control actuation, Chemical Engineering 
Science, vol.61, May 2006, pp. 6239-6248. 
[7] Kulakowski, B.T., Gardner, J.F. and Shearer, J.L. 
(2007). Dynamic Modeling and Control of Engineering 
System. Cambridge University Press. 
[8] Maciejowski, J.M. (2002). Predictive Control with 
constraints, Prentice Hall.  
[9] Wang, L. (2009). Model Predictive Control System 
Design and Implementation Using MATLAB. Springer-
Verlag, London, England. 
[10] Cengel, Y.A. (2006). Heat and Mass Transfer. Mc 
Graw Hill. 

895




