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Abstract. In this research, the free vibration of functionally graded (FG) sandwich beams 
which are supported by translational and rotational springs at both ends is considered by 
utilizing Chebyshev collocation method. Timoshenko beam theory is employed to construct the 
governing equations of motion in order to cover the significant effects of shear deformation 
and rotary inertia. An accuracy of the present modeling is verified by comparing with some 
existing results in the literature. Moreover, many important parameters such as layer and beam 
thickness ratios, material volume fraction index, spring constants, etc. are taken into account. 
Based on numerical results, it is revealed that the stiffness of the springs has significant effect 
on natural frequencies of the beams and increasing the stiffness leads to the considerable 
increase of the frequencies. 

 

1.  Introduction  
A FG sandwich beam is typically composed of multi-layers of high-strength face sheets made of 
functionally graded materials (FGMs) and flexible core is homogenous material. Due to excellent 
properties in high strength-to-weight ratio, the use of FG sandwich beams has grown rapidly in various 
engineering applications such as automotive, marine and aerospace industries. Another advantage of 
FG sandwich beams is their material properties being changed gradually across the interfaces. Hence, 
the problems of de-bonding and delaminating modes of failure between layers are eliminated. 

In order to understand mechanical behavior of the beams under the action of different loadings, 
there exist some investigations on static and dynamic responses of the beams in the past few years. Vo 
et al. [1] investigated vibration and buckling behavior of FG sandwich beams using finite element 
method (FEM). The relationship between fundamental natural frequency and critical buckling load of 
the beams was presented. By using higher-order shear deformation theory, Nguyen et al. [2] also 
provided the solutions for vibration and buckling of FG sandwich beams. A quasi-3D theory was 
employed to deal with static bending, buckling and vibration problems of FG sandwich beams in Refs. 
[3-4]. However, all of above studies considered only the beams with general boundary conditions. The 
investigation on the beams with non-classical boundary conditions is very rare recently. Tossapanon 
and Wattanasakulpong [5] showed the numerical results of bucking and vibration of FG sandwich 
beams resting on elastic foundation and the beams were assumed to be supported by classical and non-
classical boundary conditions. Trinh et al. [6] also presented the frequency results of FG sandwich 
beams supported by combinations of non-classical boundary conditions using the state space 
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approach. In terms of dynamic analysis, Bui et al. [7] applied a truly meshfree radial point 
interpolation method to solve forced vibration of FG sandwich beams under harmonic, heaviside step 
and transient loadings. For FG sandwich plates and shells, there are some useful investigations [8-14] 
that can be used as benchmarks for further comparison and design in the field of FG sandwich 
structures. 

In this research, the powerful technique of Chebyshev collocation method that can give very 
accurate results is adopted to solve the vibration problem of FG sandwich beams with elastically 
constrained ends. By implementing the method, the present solutions can satisfy all of essential and 
natural boundary conditions. Our modeling is also useful for designing the beams with imperfect or 
damaged boundary conditions simulated by using translational and rotational springs. Moreover, some 
parameters such as material volume fraction index, beam and layer thickness ratios, spring constants, 
etc., are taken into consideration. 

2.  Functionally graded sandwich beam 
Consider a FG sandwich beam composing of three layers of FG face sheets and homogenous core 
which is made of ceramic (hardcore) or metal (softcore) as shown in Figure 1. The beam is supported 
by translational and rotational spring. It is noted that RLTRTL kkk ,,  and RRk  are spring constants of 
translational and rotational springs at the ends of the beam. The layer thickness ratio of the beam from 
the bottom )2/( 0 hhz   to the top )2/( 3 hhz   is defined by three numeric notations.  

 

  

Figure 1. A geometry of FG sandwich beam with elastically constrained ends  
 

The equations for estimating the effective material properties of the beam are given as follows:   
 

,)()()( )()(
t

i
btb

i EzVEEzE        (1) 
 

,)()()( )()(
t

i
btb

i zVz        (2) 
 

where )()( zE i  and )()( zi  are the Young’s modulus and material density in each layer. The 
subscripts t  and b  denote the material properties at the faces and at the core, respectively. The 
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Poisson’s ratio ( ) is assumed to be constant. The material volume fraction, )( j
bV , which is based on 

the power law distribution can be obtained from Ref. [1] as: 
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     where k is the material volume fraction index or power law index,  k0 . The conditions of
),(and),( mtmtcbcb EEEE   are used for the beam with hardcore; and the beam 

with softcore, we use ).,(and),( ctctmbmb EEEE    It is also noted that the 
subscripts c and m denote the material properties of ceramic and metal phases, respectively.         

3.  Equations of motion 
Based on Timoshenko beam theory, the equations of motion governing vibration behaviour of FG 
sandwich FG beams can be established as follows: 
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where 0u  and 0w  are the displacements of a point at the middle plane ),0( z  is the rotation of 
the beam cross-section and t  is time. The mass moment of inertias appearing in Eq. (4) is defined as 
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Additionally, the stress results ),,( xxxzxx MQN  in Eq. (4) can be written in function of material 
stiffness components ),,,( 11115511 DBAA  as 
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     To solve the equations of motion in Eq. (4), we have adopted the Chebyshev collocation method 
(CCM) [15-18] to find out their solutions. Before applying the method, all components in Eq. (4) are 
required to change into dimensionless form with the Chebyshev domain )11(   . For detail of 
how to create the dimensionless form of the equations of motion, the readers are referred to the 
previous study of Tossapanon and Wattanasakulpong [5]. Hence, the new form of Eq. 4 can be 
rewritten as:          
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     The left-hand side Eq. (9) can be expressed according to the requirement of the method, using the 
Chebyshev differentiation matrix as: 

  )]100([4)]001([41 211211 DbDaEM      (10a) 
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))]100([)]010([2(

))]100([4)]001([43

155

211211

IDaK

DdDbEM

s 


    (10c) 

where   represents the Kronecker product. The size of 2,1 EMEM  and 3EM  is ),1(31  NN  
where N  is the number of Chebyshev point. Theses matrices are stacked together in order to produce 
the )1(3)1(3  NN  global matrix as: 
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where T][  is the transpose displacement vector which can be expressed as: 

   .].........[][ 121121121
T

NNN
T WWWUUU      (12) 

     The displacements at both ends of the beams are: 111 WU  and 111  NNN WU  . Therefore, the 
displacement vector is rewritten as: 

   .].........[][ 323232111111
T

NNNNNN
T WWWUUUWUWU    (13) 

4.  Boundary condition equations 
In this investigation, the beam is supported by elastic springs at both ends which can be seen in Figure 
1. Therefore, the relationship between shear force, bending moment and spring constants at the beam 
supports can be expressed as: 
   ,0,0,0 0  RLxTLxx kMwkQN     (14) 
   .0,0,0 0  RRxTRxx kMwkQN     (15) 
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     Similar to the equations of motion, the boundary condition equations must be transformed into the 
dimensionless form and then we use the Chebyshev differentiation matrix to produce the boundary 
condition matrices at both ends as follows:   

 Boundary condition matrices at left end 
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 Boundary condition matrices at right end 
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It is defined that 
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constant factors and 110110 and DA  are 1111 and DA  of homogenous beam. After applying the 
boundary conditions of beams, the system of algebraic can be expressed as: 
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     The subscript ''b  and ''d  refer to the point used for writing the collocation analog of the boundary 
conditions and the equations of motion, respectively. The size of bbS  is ,66  the size of bdS  is 

},6)1(3{6  N  the size of dbS  is 6}6)1(3{ N  and the size of ddS  is 
}.6)1(3{}6)1(3{  NN  For another side of Eq. (9), ddM  is the dimensionless inertia matrix 

having the same size as ddS . The ddM  can be constructed as follows: 
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in which ][I  is the )1()1(  NN  identiry matrix. 

     To solve Eq. (22), the first line leads to  

   ]}.]{[[][][ 1
dbdbbb SS        (24) 

     And the second one yields the following relationship as 
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   ]}.{[]}]{[[]}]{[[ 2
ddddbdb SS       (25) 

     From above relations, the final algebraic eigenvalue equation can be given by 

   0]}]]{[[])[][]][[[( 21  
dddddbdbbdb MSSSS     (26) 

 

5.  Numerical results and discussion 
In this section, we present several numerical exercises for vibration analysis of FG sandwich beams 
with elastically constrained ends. The FG sandwich beams are made from the mixture of Aluminum 
(Al) as metal phases and Alumina (Al2O3) as ceramic phases. The material properties of the beams 
such as Young’s modulus, mass density and Poisson’s ratio are given in Table 1. 

 Table 1. Material properties of metal (Al) and ceramic (Al2O3). 

Material Young’s modulus  
(GPa) 

Mass density 
(kg/m3) 

Poisson’s ratio 

Aluminum (Al) 70 2702 0.3 
Alumina (Al2O3) 380 3960 0.3 

 
     Convergence study and validation are carried out first in Table 2 to confirm accuracy of our 
modeling. As can be seen, an accuracy of the present results is improved when number of term (N) 
increased. For this table, it is defined that   is natural frequency in unit of rad/s and   is 
dimensionless frequency parameter. The present modeling is adaptable to deal with general boundary 
conditions. For example, clamped support is obtained when the translational and rotational spring 
constants being very high )10( 12  and simply support can be modeled by using zero of translational 
spring and very high value of rotational spring.          
 
              Table 2. Convergence study and validation of dimensionless frequencies of simply 
              supported FG sandwich beams ([1-1-1], homogenous hardcore). 
 

N           1         2         3

5 4.4691 17.4593 113.5967 
7 4.5330 17.9823 39.8887 
9 4.5315 17.9415 39.8839 
11 4.5316 17.9430 39.7089 
13 4.5316 17.9430 39.7182 
14 4.5316 17.9430 39.7178 
15 4.5316 17.9430 39.7178 
Ref.[5] 4.5316 17.9439 39.7226 
Ref.[1] 4.5324 - - 

 
     Table 3 presents dimensionless fundamental frequencies of FG sandwich beams with homogenous 
softcore and the layer thickness ratio of [2-2-1]. The dimensionless frequencies are presented in form 

of 
110

00

A

I
L  where .and 00110 hIhEA mm   In this table, the length to height ratio )(  

and the material volume fraction index (k) are varied. In this exercise, the beams are supported by 
different general boundary conditions. For this case, increasing η leads to decrease of the frequency; 
while, the frequency increases as the increase of k   
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         Table 3. Dimensionless fundamental frequencies of FG sandwich beams ([2-2-1]). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
     In table 4, the frequency parameter )(  is presented for the case of FG sandwich beams with 
elastically constrained ends. C-E beam means that the beam is supported by clamped support at left 
end, while, the right end is supported by elastic springs. The spring constants in this table are set as 
follows: for C-E beam )10,10( 12  RRTRRLTL  , for S-E beam 

)10,0,10( 12  RRTRRLTL   and for E-E beam ).10(  RRTRRLTL      
 

Table 4. Dimensionless fundamental frequencies of FG sandwich beams 
(homogenous hardcore, 5.0,20  k ). 

B.C. FG sandwich beams  
with symmetrical layers 

 FG sandwich beams  
with un-symmetrical layers 

 1-0-1 1-1-1 2-1-2  2-2-1 2-1-1 2-5-3 
C-E 0.3851 0.3997 0.3927  0.4056 0.3974 0.4116 
S-E 0.2601 0.2693 0.2649  0.2730 0.2679 0.2768 
E-E 0.3049 0.3120 0.3085  0.3152 0.3111 0.3183 

 
     Figure 2 shows the increase of frequency parameter due to the increase of spring constants for the 
case of C-E beams ).10,10( 12  RRTRRLTL   The frequency of the beam with η=5 is 
much larger than that of the beams with η=10 and η=15, respectively. The beams with E-E boundary 
condition )10;10( 2 RRTRRLTL   are considered in Figure 3 in order to find out the 
effect of k on frequency results. The variation of k from 0 to 1 shows the dramatic change in 
frequency. However, for k > 1, there is small change in frequency even the value k being increased to 
10.             

B.C.   5.0k  0.1k  0.2k  0.5k  

S-S 10 0.4394 0.4839 0.5147 0.5338 
 15 0.2966 0.3267 0.3475 0.3602 
 20 0.2234 0.2461 0.2618 0.2713 

C-S 10 0.6657 0.7325 0.7795 0.8092 
 15 0.4567 0.5029 0.5350 0.5550 
 20 0.3462 0.3813 0.4056 0.4205 

C-C 10 0.9316 1.0244 1.0904 1.1334 
 15 0.6513 0.7169 0.7628 0.7917 
 20 0.4973 0.5476 0.5826 0.6043 
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Figure 2. Dimensionless fundamental frequencies of FG sandwich beams with C-E boundary  

       condition (homogenous hardcore, k=0.5, [2-2-1]). 
   

 
Figure 3. Dimensionless fundamental frequencies of FG sandwich beams with E-E boundary  

       condition (homogenous softcore, [2-1-2]). 
 

     Figure 4 illustrates the frequency changes due to the increase of η for three different boundary 
conditions. The spring constants in this figure are set as follows: for C-E beam

10,1012  RRTRRLTL  , for S-E beam 10,0,1012  RRTRRLTL   and for E-
E beam .10 RRTRRLTL   As can be observed, the frequency of C-E beam is higher than 
the frequency of E-E and S-E beams, respectively. To study the significant effect of spring constants 
on frequency of FG sandwich beams, Figures 5-6 illustrate the variation of fundamental frequency 
with various values of spring constants. As shown in these figures, it is clearly seen that increasing the 
constants leads to the considerable increase of frequency for every beam.      
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Figure 4. Dimensionless fundamental frequencies of FG sandwich beams with different boundary  

    conditions (homogenous hardcore, [2-2-1], k=0.5). 
 

 
Figure 5. Dimensionless fundamental frequencies of FG sandwich beams with S-E boundary  

       conditions (homogenous softcore, [2-1-1], k=0.5, η=20). 
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Figure 6. Dimensionless fundamental frequencies of FG sandwich beams with E-E boundary  

       conditions (homogenous softcore, [2-5-3], k=0.5, η=20). 
 

6.  Conclusion 
In this research, the vibration of FG sandwich beams with elastically constrained ends is analyzed 
using Chebyshev collocation method. The present solutions satisfy both natural and essential boundary 
conditions. An accuracy of our modeling is confirmed by comparing with some existing solutions in 
the past for the cases of general boundary conditions. According to the numerical exercises, it is found 
that many parameters such as material volume fraction index, layer thickness ratio, length to height 
ratio, spring constants, etc. have significant impact on the variation of natural frequencies of the 
beams. For example, the frequency of the thick beam with low value of length to height ratio is larger 
than the frequency of thin beam with high value of the ratio, for every boundary condition. In case of 
FG sandwich beams with homogenous softcore, increasing the volume fraction index leads to the 
increase of the frequency. Due to the system becomes stronger when the spring constants at 
boundaries increase, therefore, the frequency of the beams is higher as the increase of spring stiffness. 
As mentioned above, it is important to consider all of those parameters when designing the beams.             
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