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Abstract. This paper presents the finite element method for analyzing two-dimensional heat 
conduction problem using the closed-form quadrilateral element. In general, Gauss-Legendre or 
numerical integration is the most widely used method in deriving the matrices for heat 
conduction problems.  However, the accuracy of the result depends on the number of Gauss 
points which in turn has an effect on the CPU time. The closed-form expression is developed by 
using Mathematica symbolic manipulation and hand-post processing. The results show that the 
derived closed-form matrices can improve not only the solution accuracy but also the CPU time 
required for computation.  

1.  Introduction 
Finite element method is the acknowledged numerical analysis technique due to its performance and 
accuracy for solving the complex engineering problems. When considering the real world engineering 
problems, the computational domain always be an irregular geometry and arbitrary condition; hence, 
the analytical solution is required a lot of effort or sometimes it is impossible to determine. That is the 
reason why finite element method is widely used. 

Generally, element’s shape of two dimensional problem can be divided into two element types; 
triangular element and quadrilateral element. Quadrilateral element gives the better solution than 
triangular element because the triangular element presents the distribution of the solution as flat plane; 
on the other hand, the quadrilateral element produces the bilinear interpolation function which obtain 
the higher accuracy. However, the integration over quadrilateral element is very difficult and complex 
that the numerical integration is commonly applied. However, applying such numerical integration 
always causes numerical error in the solution.           

Gauss-Legendre is common numerical integration technique applied for the quadrilateral element. 
This method evaluates solution by multiplication of weight and value of function at Gauss point location. 
The accuracy of solution depends on number of Gauss point. The more number of Gauss point is applied, 
the more accuracy will be obtained. Number of Gauss point affects to the CPU time consuming which 
cannot be denied. 

Nowadays, algebraic and symbolic manipulation programs are continuously developed and the 
computer hardware is greater efficiency than the past [1]. Therefore, researchers take these advantages 
to develop and improve element stiffness matrix calculation. In 1989, Kikuchi [2] used symbolic 
manipulation to direct integration the stiffness matrix for 4 node quadrilateral element with elastic-
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plastic problem which give the high accurate result but required the long CPU time. Yagawa et al. [3] 
worked with the modified numerical integration scheme based on symbolic manipulation which can 
reduce CPU time and accurate solution. According to review article of symbolic computation in 
structural engineering [4], there is considerable attempt to develop stiffness matric in closed-form 
expression by using symbolic language; nevertheless, it is not obviously state how FEM closed-form 
expression were.  Then, Videla et al. [5] concerned with 8 node quadrilateral element on elastic problem 
in 2007. This paper concludes that the solution is much closed to the exact solution but stiffness matrix 
integration spent large computer memory and integral equations of stiffness matrix were very large and 
complex. In 2014, Roque [6] presented symbolic analysis on plate bending by using MATLAB to create 
two programs: generating expression and numerical calculation program. However, no published works 
presents explicitly closed-form expression and considers shape element to categorize FEM equation.  

This paper develops the closed-form quadrilateral element for heat conduction problems. The 
solution accuracy and computational time of developed finite element matrices are investigated by using 
three cases which are single element matrix, heat conduction without heat generation and heat 
conduction with heat generation.     

2.  Finite Element Method for Heat Transfer Analysis 

2.1.  Governing equations for heat transfer problem 

For two-dimensional heat transfer problem, the temperature distribution of pure heat conduction is 
governed by the differential equation as; 

 0x y

T T
k k Q

x x y y

                
  (2.1) 

where   xk , yk  are the thermal conductivity in x and y direction, respectively. 
             Q          is the internal heat generation. 

2.2.  Finite element formulation for quadrilateral element 

The method of weighted residuals is applied with equation (2.1) along with the isotropic material 
condition. Therefore, the finite element equation can be written as shown below; 

 0T T
N k k Q d

x x y y

                    
   (2.2)   

Temperature distribution on the quadrilateral element in the form of multiplication between 
interpolation function and nodal temperatures is shown in equation (2.3). 

  
4

4 11 41
( , ) ( , )i i

i

T x y N x y T N T


       (2.3) 

After substitute equation (2.3) into equation (2.2) and then apply Green’s theorem. The finite element 
equation for heat transfer problem can be rewritten in matrix form as; 

    [K ]C T Q  (2.4) 

where          C

A

N N N N
K k tdxdy

x x y x

                          
  (2.5a) 
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                      
A

Q Q N tdxdy    (2.5b) 

2.3.  Interpolation function of quadrilateral element  
The quadrilateral element in Cartesian coordinate system ( ,x y ) can be transformed to the natural 

coordinate ( ,  ) in range of 1 1    and 1 1   . Thus, the interpolation function, iN , as shown 
in equation (2.3) can be presented as follow;  

 
1

2

1 (1 )(1 )
4
1 (1 )(1 )
4

N

N

 

 

  

  
     

3

4

1 (1 )(1 )
4
1 (1 )(1 )
4

N

N

 

 

  

  
 (2.7) 

As the interpolation function is in natural coordinate, the chain rule is employed and rewritten in the 
matrix form as below;  

 

N N x N y

x y

N N x N y

x y

  

  

    
 

    
    

 
    

                    

 
( 2 2)

J

N x y N

x
NN x y
y

  

  



       
                     

            

 (2.8) 

Hence, the first derivative of interpolation function in Cartesian coordinate can be written in natural 
coordinate as; 

   1 *

N NN

x
J J

N N N
y

 

 



     
                          

           

 (2.9) 

After substitution of equation (2.9) into equation (2.5a) and (2.5b), the finite element matrix can be 

rewritten in the natural   coordinate as  

      
1 1

4 2 2 41 1

( , ) ( , ) ( , )T

CK k B B t J d d       
  

    (2.10a) 

    
1 1

1 1

( , ) ( , )Q Q N t J d d     
 

    (2.10b) 

where  B  is the first derivative of interpolation function matrix; 

 

31 2 4
* *
11 12
* *

31 2 421 22

[ ( , )]

NN N N

J J
B

NN N NJ J

   
 

   

   
              
     

 (2.11) 
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2.4.  Conventional quadrilateral matrix 
For conventional technique, Gauss Legendre integration is applied to compute the conduction matrix 
and heat generation vector which can be written as the following; 

  
1 1

( , ) ( , ) ( , )
NG NG T

C i j i j i j i j
i j

K WW k B B t J     
 

          (2.12a) 

    
1 1

( , ) ( , )
NG NG

i j i j i j
i j

Q WW Q N t J   
 

    (2.12b) 

where NG  is number of Gauss point 

iW , jW  are weights in  and   direction, respectively 

i , j  are location of Gauss point 

2.5.  Closed-form quadrilateral matrix 
To derive the closed-form quadrilateral matrix, the heat conduction matrix (equation (2.10a)) can be 

rewritten to the form as shown in equation (2.13).  

    CK k t I    (2.13) 

where       
1 1

1 1

( , ) ( , )T
I B B J d d     

 

    (2.14)  

The multiplication of matrix    T
B B J  in equation (2.14) can be calculated by hand and grouped 

with the intermediate parameters as shown below;   
 

 
2 21 1

1 1

ij ij ij ij ij ij
ij

h f g l m n
I d d

p q r

    
 

  

    


    (2.15) 

while h  , f , g  , l  , m  , n  , p  , q  and r  are rational function of nodal coordinate.  
Then, equation (2.15) can be integrated directly using symbolic manipulation in Mathematica program 

to obtain the closed-form matrix of heat conduction. After considering the shape of element, some 
intermediate parameters in equation (2.15) become zero when the opposite sides of element are 
paralleled. Therefore, the closed-form matrix of heat conduction can be divided into four cases based on 
the parallelism of the side of element.    

2.5.1.  No parallel side. 
For this case, all variable are valid, thus the conduction matrix can be noted as following:  

 
1 1 2 2

1 1

h f g l m n
K kt d d

p q r

      
  

    


    (2.16) 

 1 2 3 4
3 36

B B B B
K kt A

q r

   
  

 
  (2.17) 
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where      
2 2 2 2

2 2 2

2( 3 2 3 4 ) 4( )
3

g r mpq fqr npqr lpr gr mp
A

q r r

     
 

     
 

2
3 1 2 2

1 1 1 2
1

3 (2 ) 2 ( 2 ) 3 ( r) 2
log

2 (2 )

r r q hq fE l C p q r qr gq E nq C p q qr
B E E

mq C p q r qr

             
     

     
 

2
4 1 2 2

2 2 2 2
1

3 (2 ) 2 ( 2 ) 3 ( r) 2
log

2 (2 )

r r q hq fE l C p q r qr gq E nq C p q qr
B E E

mq C p q r qr

              
     

     
 

2
1 1 4 2

3 3 3 2
1

3 (2 ) 2 ( 2 ) 3 ( r) 2
log

2 (2 )

r r q hq fE l C p q r qr gq E nq C p q qr
B E E

mq C p q r qr

               
      

     
 

2
2 1 3 2

4 4 4 2
1

3 (2 ) 2 ( 2 ) 3 ( r) 2
log

2 (2 )

r r q hq fE l C p q r qr gq E nq C p q qr
B E E

mq C p q r qr

                
      

1E p q r   , 2E p q r   , 3E p q r   , 4E p q r    

2 2 2
1C p q r    , 2 2 2

2 2 2C p q r    

2.5.2.  One pair of parallel sides (between line 1-2 and line 3-4) 

 

Figure 2.1.  The element that has line 12  parallels with line34 . 

As line 12  is parallel to line 34 , both slopes are equal and give 0q  . Hence, the conduction matrix 
equation can be rewritten as equation (2.18) and corresponding algebraic equation be noted as equation 
(2.19) 

 
1 1 2 2

1 1

h f g l m n
K kt d d

p r

      
 

    


   (2.18) 

      2 2 2 2
3 12 12 6 6 6 2 log log

3
kt

K mpr gr mp gpr hr lr p r p r
r
              (2.19) 

2.5.3.  One pair of parallel sides (between line 1-4 and line 2-3) 

 

Figure 2.2.  The element that has line 14  parallel with line 23 . 
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As line 14  is parallel to line 23, both slopes are equal and give 0r  . Hence, the conduction matrix 
equation can be rewritten as equation (2.20) and corresponding algebraic equation be noted as equation 
(2.21) 

 
1 1 2 2

1 1

h f g l m n
K kt d d

p q

      
 

    


   (2.20) 

      2 2 2 2
3 12 12 6 6 6 2 log log

3
kt

K lpq fq lp fpq hq mq p q p q
q

              (2.21) 

2.5.4.  Two pairs of parallel sides. 
 

 
Figure 2.3.  The element that has two pairs of parallel sides. 

When there are two parallels, both q and r become zero. Hence, the conduction matrix equation can 
be rewritten as equation (2.22) and corresponding algebraic equation be noted as equation (2.23) 
 

 
1 1 2 2

1 1

h f g l m n
K kt d d

p

      
 

    
    (2.22) 

 
 4 3

3
h l m

K kt
p

  
  

 
 (2.23) 

3.  Results 
To evaluate the efficiency of the derived matrix, the investigation in both accuracy and computational 
time compared between closed-form expression and conventional method are considered. Three different 
cases are selected for this paper; 1) single element matrix, 2) heat conduction problem without heat 
generation and 3) heat conduction problem with heat generation.  

3.1.  Single element matrix 
Accuracy and performance of a derived conduction matrix is evaluated by several different shape 
elements. The accuracy is measured by the total percentage difference of all 16 members in a conduction 
matrix [2] as shown in equation (3.1). While the performance is measured by CPU time consuming to 
calculate single element matrix. The time consuming is presented in ratio of time used by Gauss-
Legendre integration to closed-form expression. 

 

2
4 4

1 1
100%

ClosedForm GaussLegendre
ij ij

ClosedForm
i j ij

K K

K 

 
  

 
  (3.1) 

The several different shape elements and their description are as following: 
Case A : Rectangular element (2 pairs of parallel side) 
Case B : Parallelogram or Rhomboid 
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Case C : Trapezoid (1 pair of parallel side, 2 right angles, 1 obtuse angle and 1 acute angle) 
Case D : Trapezoid (1 pair of parallel side, 2 obtuse angles and 2 acute angles) 
Case E : Trapezium (1 right angles, 2 obtuse angle and 1 acute angle) 
Case F : Trapezium (1 right angles, 1 obtuse angle and 2 acute angle) 
Case G : Trapezium (1 obtuse angle and 3 acute angle) 
Case H : Trapezium (2 obtuse angle and 2 acute angle) 
Case I :   Poor shape trapezium 

 
Table 3.1. Different between closed-form expression and Gauss Legendre integration. 

 Case A Case B Case C Case D Case E Case F Case G Case H Case I 

 

   

NG = 2 0.00 0.00 200.03 34.74 9.81 136.02 14.40 36.17 193.20 

NG = 3 - - 6.07 9.91 0.23 8.17 0.44 3.65 93.40 

NG = 4 - - 0.18 2.76 0.01 0.55 0.02 0.52 55.41 

NG = 5 - - 0.01 0.76 0.00 0.04 0.00 0.09 36.77 

NG = 6 - - 0.00 0.21 - 0.00 - 0.02 26.21 

NG = 7 - - - 0.06 - - - 0.00 19.63 

NG = 8 - - - 0.02 - - - - 15.25 

NG = 9 - - - 0.00 - - - - 12.20 

NG = 10 - - - - - - - - 9.98 
 

Table 3.2. Ratio of CPU time between Gauss Legendre integration to closed-form expression. 

 Case A Case B Case C Case D Case E Case F Case G Case H Case I 

NG = 2 2.09 2.08 2.09 1.98 1.51 1.47 1.51 1.48 1.48 

NG = 3 - - 2.08 2.06 1.55 1.56 1.55 1.52 1.57 

NG = 4 - - 2.20 2.16 1.61 1.61 1.61 1.59 1.60 

NG = 5 - - 2.38 2.26 1.71 1.65 1.71 1.72 1.68 

NG = 6 - - 2.49 2.47 - 1.80 - 1.81 1.78 

NG = 7 - - - 2.59 - - - 1.95 1.93 

NG = 8 - - - 2.78 - - - - 2.11 

NG = 9 - - - 3.05 - - - - 2.24 

NG = 10 - - - - - - - - 2.42 
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Table 3.1 shows that some shape elements are required high number of Gauss points to achieve the 
same accuracy as closed-form expression such as 9×9 Gauss point for case D and 10×10 Gauss point for 
case I. The results demonstrate that the closed-form element matrix provides more solution accuracy 
compared to the conventional technique. 

From Table 3.2, Gauss-Legendre always spends more time than the closed-form expression, for 
example, 2.42 and 3.05 times for case I and D, respectively. When considering the cases based on 
parallelism of element, if the element has parallel sides, it would spent 25% less than general or non-
parallelism cases. 
 

3.2.  Heat conduction problem without heat generation. 
Considering heat conduction on rectangular plate with insulation along left and bottom side while the 
other sides are assigned with specific temperature as shown in Figure 3.1. The exact solution for 
temperature distribution of this problem can be calculated by equation (3.2). The rectangular domain is 
divided into 118 elements by using AUTOMESH2D [7] as shown in Figure 3.2. Gauss-Legendre method 
with 2×2 Gauss point is used in this problem to compare the accuracy and performance with closed-
form element matrices. 

 
cosh cos

8 8( , )
cosh

4

y x

T x y

 



   
   
   

 
 
 

  (3.2) 

       
Figure 3.1. Problem statement.            Figure 3.2. Mesh element. 

The result of temperature distribution using the closed-form expression is presented in Figure 3.3. 
Figure 3. 4 shows the temperature distribution along the line of symmetry (y =  1)  from closed- form 
expression and Gauss-Legendre compared with the exact solution. The accuracy is measured by the mean 
absolute percentage error (MAPE) (equation (3.3)) and maximum percentage error. While the performance 
is measured by CPU time required to calculate the system conduction matrix.  The accuracy and 
performance of both closed-form and Gauss-Legendre are summarized in Table 3.3. 

 1
100%

ExactNN
n n

Exact
n n

T T

T
MAPE

NN








 (3.3) 

where     NN  is number of node.  
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Figure 3.3. Temperature distribution on rectangular plate. Figure 3.4. Temperature along the symmetry line.  

From Figure 3.4, temperature from both closed-form expression and Gauss-Legendre are in the same 
trend as the exact solution. Both mean absolute percentage error and maximum percentage error from 
closed-form expression are less than Gauss-Legendre integration. Closed-form expression also spends 
27.22% less CPU time than Gauss-Legendre integration.  

Table 3.3. Result of Closed form expression and Gauss Legendre  

Item Unit Closed Form Gauss-Legendre 

Mean absolute percentage error % 0.05478 0.05515 

Maximum percentage error % 0.6251 0.6310 

CPU time sec 0.006468 0.008887 

3.3.  Heat conduction problem with heat generation. 
Considering heat conduction on the triangular plate with zero temperature on all edges with unit heat 
generation as shown in Figure 3.5. The exact solution for temperature distribution of this problem can 
be calculated by equation (3.3). The triangular domain is divided into 320 elements by using 
AUTOMESH2D as shown in Figure 3.5b and then do re-meshing to 413 and 534 elements in order to 
see the effect of the refined mesh. Gauss-Legendre method with 2×2 Gauss point is used in this problem 
to compare the accuracy and performance with closed-form element matrices. 

   ( , ) y 2 3 3
4
Q

T x y x y x y
k

     (3.3) 

 

            (a)                                   (b)                                            (c) 

Figure 3.5. a) Problem statement, b) Mesh element, c) Temperature distribution on triangular plate 
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For comparing the accuracy of closed-form expression and Gauss-Legendre method, the value of 
mean absolute and maximum percentage error are considered. Table 3.4 shows the mean percentage 
error of all nodes of closed-form expression is less than Gauss-Legendre integration. Furthermore, closed-
form expression gives the lower maximum percentage error than Gauss-Legendre integration. On the 
other hand, closed-form expression spends 28.44% less CPU time than Gauss-Legendre as presented in 
Table 3.4.  

Table 3.4. Result of closed-form expression and Gauss Legendre.  

Item Unit Closed-Form Gauss-Legendre 

Mean absolute percentage error % 0.3343 0.3352 

Maximum percentage error % 5.1184 5.1261 

CPU time Sec 0.0156 0.0218 

While the number of mesh increasing, Table 3.5 shows that the closed-form element matrices give more 
accurate result both mean and maximum percentage error. 

Table 3.5. Percentage error of different number of element. 

 Mean absolute percentage error  Maximum percentage error 

No. of Element Closed-Form Gauss-Legendre  Closed-Form Gauss-Legendre 

320 0.3343 0.3352  5.1184 5.1261 

415 0.2784 0.2790  5.1130 5.1219 

534 0.2462 0.2473  5.0995 5.1076 

4.  Conclusion 
This paper explicitly presents the closed-form stiffness matrix of the quadrilateral element for heat 

conduction problems. The evaluation of the accuracy and computational time between both closed-form 
expression and Gauss-Legendre methods is demonstrated by three cases. The investigations are 
confirmed that the accuracy of closed-form expression is better than Gauss-Legendre integration, 
especially in single element testing. Considering a poor shape element, Gauss-Legendre method requires 
more than 10×10 Gauss points in order to obtain the same accuracy as closed-form expression. 
Moreover, the CPU time consuming of Gauss-Legendre method is more than the proposed method 1.5 
to 3 times. For heat transfer problems, the results of the closed-form expression and Gauss-Legendre are 
comparable. However, the computational time of closed-form expression is faster than Gauss-Legendre 
almost 30%. This conclude that the closed-from expression of quadrilateral element developed in this 
paper can improve the performance and solution accuracy of the finite element method. 
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