
 
 
 
 
 
 

The wavelet-based artificial neural network for state of charge 
estimation in lithium ion battery 

W. Phusakulkajorn*, C. Benyajati, T. Phraewphiphat, and J. Mongkoltanatas  

National Metal and Materials Technology Center (MTEC), National Science and 
Technology Development Agency (NSTDA), 114 Thailand Science Park, Thanon 
Pahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum thani 12120, 
Thailand 

* Corresponding Author: wassamon.phu@mtec.co.th, Tel. +66 2564 6500 ext. 4359 

Abstract. State of charge (SOC) is described as the percentage of the amount of energy available 
in a battery to the maximum battery energy. It is one of battery parameters that play an important 
role in providing remaining driving range in electric vehicles with a long term benefit of 
preventing battery performance deterioration and accelerated ageing. Consequently, models with 
various approaches have been developed for SOC estimation. However, SOC estimation is very 
difficult to implement due to complex characteristics of a battery functioning by electrochemical 
reactions. Accurate SOC estimation requires detailed physical knowledge so that capacitive 
effects of a battery can be captured. To overcome those parametric uncertainties, a data-driven 
approach such as an artificial neural network is one strategy used. Therefore, it is the objective 
of this work to propose a technique that delivers a reliable SOC estimation. The back-propagation 
neural network was employed with the help of wavelet transformation. Battery current, battery 
voltage, temperature, and SOC at the previous time steps were considered as inputs to the 
network. Cylindrical Lithium-Ion batteries with a capacity of 2.6 Ah were used to obtain the 
experimental data. The results showed that the proposed method was numerically efficient and 
the obtained SOC estimation was consistent with the associated battery experiments. 

1.  Introduction 
As the issue of global warming attracts public awareness, electric vehicles (EVs) gain much interest as 
clean-power transportation. Battery is one of the main source that EVs have to rely on. In electric 
vehicles, different battery chemistries—lead acid, lithium ion, nickel cadmium, nickel metal hydride—
are used. Among those, lithium ion batteries are mostly prominent due to their high energy density and 
long cycle life [1]. Lithium ion batteries are applied in various type of EVs such as Hybrid Electric 
Vehicle, Plug-in Hybrid Electric Vehicle, and Battery Electric Vehicle.  

For mobile applications, Lithium-ion battery has been used in portable electronic devices, e.g. cell 
phones, laptops, etc. for many years. Battery status, which is an important parameter providing available 
energy for user, should be more accurate and reliable in electric vehicles than in portable devices. 
Consequently, improving reliable estimation of remaining battery capacity has been the focus of battery 
and EV manufacturers. 

The remaining usable energy can be defined from state of charge (SOC) which is one of battery 
parameters. SOC is described as the percentage of the amount of energy available in a battery to the 
nominal battery capacity. It can be implied to a remaining driving range and a warning to recharge 
battery. Many approaches have been proposed for SOC models. This ranges from the direct methods [2-
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4] to the indirect methods [5-8]. Coulomb counting is an example of a direct method that directly 
measures the battery current in order to calculate SOC by integrating the measured values through time 
[4]. Even though this method is online and simple, errors are accumulated over time from the integration. 
As a result, less accurate SOC estimation is obtained. Moreover, employing the Coulomb counting 
requires the high speed current sensor because fluctuated current signal is produced in EVs. This makes 
the method more expensive and less practical. Other estimation techniques are also proposed through 
an understanding of a relationship between SOC and some physical battery properties such as the 
terminal voltage, open circuit voltage (OCV), and impedance [2,3].  However, using these battery 
parameters in an SOC estimation comes with consequences. The method cooperating with OCV is not 
practical to estimate SOC during operation in EVs as OCV needs to be measured offline. Even though 
the terminal voltage can be measured online and is widely applied to relate with SOC in portable devices 
and EVs, SOC accuracy depends on applied model as the battery is a nonlinear time-variant dynamic 
system. 

To obtain more robust SOC estimation subjected to parametric uncertainties, an indirect approach, 
such as fuzzy logic [8], neural network [1,9-11], Kalman filters [6,7,12], are presented in order to 
simulate a nonlinear SOC behaviour. These methods are adaptive systems for SOC estimation developed 
from artificial intelligence. They require no knowledge of physical battery properties and show good 
estimation. Among these indirect methods, artificial neural network (ANN), which is a data-driven 
approach, shows less computational time [12] and offered better SOC estimation [7,9]. Although ANN 
shows much superiority, it also comes with problems such as under- and over-fitting causing poor 
performance in actual applications. The occurrence of noise presented in the SOC estimation obtained 
from NN is another issue as shown in the study of [2,8]. Consequently, the hybrid methods, whose 
objective is to benefit from the advantages of various methods, are introduced to help in yielding a better 
ANN model. Kalman filters, such as extended Kalman filter (EKF) [6,12], unscented Kalman filter 
(UKF) [7] , adaptive extended Kalman filter (AEKF), and wavelet transform [5] are taken into account 
with NNs to avoid noises created in the NN estimation. It has been shown in many literatures that 
superior SOC estimating results are obtained from the hybrid methods [5,8].  Further literature surveys 
on the categories and mathematical methods of SOC estimation can be found from [2]. 

In this work, the objective is to propose a technique that delivers a reliable SOC estimation by using 
the back-propagation neural network and the wavelet transformation and to visualise this technique 
limitations. The used techniques is detailed in Section 2. The proposed SOC estimation method and 
detailed experiments are presented in Section 3. The obtained experimental data are compared with the 
estimated SOC which is shown in Section 4. Discussion is elaborated in Section 5. The last section 
draws conclusions of this work. 

2.  Methodology 

2.1.  Back-propagation neural network 
Artificial neural network (ANN) is a mathematical tool which is capable of representing arbitrarily 
complex non-linear processes. It is inspired by the way the human brain processes information. ANN 
consists of three main parts; input layer, hidden layer and output layer. Each layer consists of nodes, 
analogous to neurons in the brain. The nodes or artificial neurons communicate with others in the next 
layer by multiplying each of the inputs by a weight. Then the multiplications are combined and passed 
to an activation function as shown in Figure 1. Typically, the network can have one or more hidden 
layers in which Figure 1 illustrates a neural network with one hidden layer used in this work.   
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Figure 1. Graphical sketch of a neural network with one hidden layer. 
 
 A back-propagation neural network is one of algorithms defining how weights are adjusted in order 
to achieve the desired outputs of the network. It is the most popular type in artificial neural networks 
due to their good ability of nonlinear mapping [10,11]. The weights of a back-propagation network are 
determined from the difference between the targeted and actual output values of all output and hidden 
neurons. This is done by a backward propagation of errors during the training phase in order to minimise 
the output error. 

2.2.  Discrete wavelet transformation 
Discrete wavelet transformation (DWT) is a mathematical tool that can decompose a time-domain signal 
into different frequency groups. It can provide the localisation property in both the time and frequency 
domain [5]. The output of DWT on a given set of discrete signal provides the corresponding 
approximation coefficients and detail coefficients of the input signal. By applying a signal with the low-
pass filter and the high-pass filter, the approximation and the detail information are obtained, 
respectively. Typically, the length of each scaling coefficients is generally decreased by half. 

In this work, À-trous wavelet transform is employed. It is a non-decimated wavelet transformation 
which decomposes signal into coefficient series with the same length as the input signal. As presented 
in Figure 2, given a time signal x(k), the À-trous wavelet transform gives the approximation, Aj(k), and 
detail coefficients, Dj(k), at resolution level j at position k as: 
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This is done by passing the signal x(k) through a series of low pass filters h analysed at each resolution 
level j at position k. Finally, the signal can be reconstructed using the mathematical expression as 
follows:  
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where n is a number of resolution levels.  
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Figure 2. Wavelet transformation filtering process with resolution level equals to 2. 

3.  Estimation of Lithium Ion Battery SOC 

3.1.  The proposed technique 
In this work, the combining SOC model of the back-propagation NN and wavelet decomposition is 
proposed. Figure 3 describes the underlying idea of our technique which comprises 3 main steps; wavelet 
decomposition, NN training, and wavelet recombination. Prior to the network learning, wavelet 
decomposition is applied on each battery input data. Two sets of wavelet coefficients, for which one 
pattern represents detail information of each data and the other acts as a smoothing filter, are extracted 
for the ANN. The number of resolution levels chosen in this work is 2 and the choice of the mother 
wavelet is the Daubechies 2 wavelet (Figure 2).  

 
Figure 3. Wavelet-based ANN. 

 
Next, the decompositions are fed to the neural networks in order to predict the SOC data at the current 

time. As can be seen in Figure 3, three networks are trained for each set of wavelet coefficients. In the 
learning process, a conjugate gradient back-propagation neural network is used. The Fletcher-Reeves 
update is utilised to perform weight adjustment, due to its fast and efficient computation.  

Finally, the obtained wavelet SOC estimation at different resolution levels obtained from the neural 
network are combined to reconstruct the original SOC data. This can be done by performing the 
calculation in equation (3). 
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3.2   Experimental data for the neural network 
It is a known practice that accuracy of an artificial neural network model is dependent on an input 
variable selection. Battery factors influencing on the battery SOC are therefore determined as inputs to 
ANN models. Commonly, the battery terminal voltage, and discharge current are considered [6,8-11]. 
As environmental conditions and ambient temperature also affect battery SOC, many researchers 
proposed a model incorporating temperature as an additional input in order to improve accuracy [7,11].  
 In addition, training data are also crucial in establishing an NN model. In order to obtain accurate 
NN model for SOC estimation, all possible real-life loading conditions should be considered in the 
training process. However, this is very difficult as the real-life loading conditions of EVs are complex 
and uncertain. This is due to road conditions, speeds used, and driving styles. Even though training data 
collected during the field test of EVs can improve the NN performance, at this stage we scope ourselves 
for data obtained in a laboratory.  
 In this work, cylindrical lithium-ion batteries with a capacity of 2.6 Ah were used in order to obtain 
the training and testing data for the neural network. Different 5 charge and discharge currents (C/5, C/4, 
C/3, C/2, and 1C) and two thermal environments (25°C and 45°C) for battery testing were considered 
in order to construct the NN. The past values of battery voltage, current, temperature, and SOC were 
considered as input factors to the neural network since they are related to the battery SOC at the current 
time step. For each charge/discharge cycle, the battery’s terminal voltage, SOC, and current were 
measured. All test cycles for each battery data are illustrated in Figures 4 – 5. 
 

 

Figure 4. Battery profiles for NN training and testing, which were measured at 25°C. 
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Figure 5. Battery profiles for NN training and testing, which were measured at 45°C 
 
 The validation of the NN models should be different from the training and testing data. In this study, 
pulse discharge tests which represent the Economic Commission for Europe (ECE) standard driving 
cycle were used as a validation of the trained ANNs. The battery profile are shown in Figures 6-7. It 
was our purpose to employ these battery data to test the robustness and generalization of the obtained 
ANNs. 

3.3 Design of the neural network architecture 
For the SOC estimation using ANN in this work, the input vector X = (S, I, V, T) composed of four 
input battery parameters representing SOC, current, voltage, and temperature at the previous time steps. 
The output Y(X) of the network was designed to be the SOC estimation at the current time step. 
 In general, the accuracy of the NN result can be improved from increasing number of nodes used in 
the hidden layer. As a result, the network can be more complex and the computational time can be more 
expensive. Therefore, numbers of nodes were experimentally varied for both the input and hidden layers. 
The battery data from the battery cells collecting in laboratory, shown in Figures 4-5, were used to train 
and design the NNs. No differentiation between current classifications; charging and discharging, was 
considered in the training process. And the resting stage was not included in the SOC estimation study. 
However, to avoid over-training of an NN, the second cycle of each testing current (C rate) was selected 
for the network training and testing.  
 To evaluate the performance of the obtained SOC model, the collected experimental SOC was 
compared against the estimated SOC. The network performance was evaluated by the Root mean 
squared error (RMSE) and the coefficient of determination (R2). 
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Figure 6. Pulse test for NN model validation, which was measured at 25°C. 

4. Results 
The constant charging and discharging battery profiles illustrated in Figures 4-5 were employed to 
establish NN models for SOC estimation. The total dataset of approximately 25,000 was divided into 
two sets for the network training and testing. The training set was used to train the network whereas the 
testing set was used to test the network during the model development and also to continuously correct 
it by adjusting the weights of network links. Detailed descriptions of how battery data are divided for 
the training and testing set are elaborated in Table 1.  
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Figure 7. Pulse test for NN model validation, which was measured at 45°C. 

 
   
Table 1. Model description used in establishing an NN for SOC estimation. 

  
Model 

                                             Detailed description 
              Training  set                                                         Testing set 

1 75% of all data obtained from both 
temperature              

25% of all data obtained from both 
temperature 

2 All data obtained from both temperature 
and charge/discharge by the 1C,C/2, and 
C/3 rates            

All data obtained from both temperature 
and charge/discharge by the C/4, and C/5 
rates 

3 All data obtained from both temperature     
and charge/discharge by the 1C,C/3, and 
C/4       rates                                                    

All data obtained from both temperature 
and charge/discharge by the C/2, and C/5 
rates 

4 All data obtained from 25°C and 
charge/discharge by the 1C,C/2,C/3, C/4, 
and C/5 rates and data from 45°C               
charge/discharge by the C/5 rate                    

All data obtained from 45°C and 
charge/discharge by the 1C,C/2,C/3, and 
C/4 rates                                                          

5 All data obtained from 25°C and                
charge/discharge by the 1C,C/2,C/3,             
C/4, and C/5 rates                                           

All data obtained from 45°C and 
charge/discharge by the 1C,C/2,C/3, C/4, 
and C/5 rates                                                  
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4.1. Training and testing results 
After performing experiments on the ANN architecture, the designed NNs used for each SOC model 
were obtained as shown in Table 2. Detailed estimation performance about SOC during the training and 
testing schemes, obtained from comparison between the measured and estimated values at charging and 
discharging with constant currents, are presented in Table 2 for each NN model. The RMS errors for all 
model are within 3% except for Model 5 which gives error of 20%. Figure 8 shows SOC estimations 
obtained from NN models during the network testing. The results exhibit great consistency between the 
estimation and the actual SOC for most models. However, Model 5 gave relatively poor performance. 
The error was mainly presented when SOC approached a fully-charged state. It can be seen in Figure 8e 
that this behaviour could not be accurately captured. 
 

a) b)   

c)  d)  

e)  

Figure 8. SOC estimations obtained from different NN models during the network testing: a) Model 1, 
b) Model 2, c) Model 3, d) Model 4, e) Model 5. 
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Table 2. SOC estimation performances compared among different NN models during the network 
training and testing. 

 

NN Model 
     Training set                   Testing set  

Architecture RMSE R2             RMSE             R2 
1 4-3-1 0.0036 0.9998 0.0063 0.9998 

2 4-16-1 0.0041 0.9998 0.0011 0.9996
3 
4 
5 

4-15-1 
4-19-1 
8-14-1 

0.0042 
0.0052 
0.0049 

0.9998 
0.9998 
0.9997 

0.0044 
0.0328 
0.2017 

0.9997 
0.9897 
0.5929

 

4.2. Validation results 
In this section, the validation data set, which is not presented to the network during the network training, 
was used to validate the established NN models described in Section 4.1. The pulse discharging test 
profile (Figures 6-7) were considered in order to determine the robustness and generalisation of the 
obtained NN models. Figures 9 and 10 show the comparison between the estimated and the actual SOC 
measured at 25°C and 45°C, respectively. It can be seen that the estimated SOC for the pulse test 
obtained from Model 1-5 are consistent with the associated actual SOC. Its estimation error of each NN 
model is shown in Table 3.  The average error is less than 2% for Model 1-4. Errors are presented in the 
middle of the discharging cycle as illustrated in Figures 9-10. Only Model 5 provides errors more than 
2% for both temperature. However, the estimated SOC at 45°C obtained from Model 5 provides 
relatively higher RMS error of 20%. It can be seen in Figure 10e that pulse discharging behaviour at the 
battery fully charged state cannot be simulated. 
 

Table 3. SOC estimation performances compared among different NN models. 
 

NN Model 
    25°C                           45°C  

RMSE R2             RMSE             R2 
1 0.0071 0.9994 0.0063 0.9995 

2 0.0112 0.9988 0.0039 0.9998 
3 
4 
5 

0.0118 
0.0165 
0.0226 

0.9985 
0.9972 
0.9948 

0.0037 
0.0128 
0.2017 

0.9998 
0.9984 
0.5929 
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a) b)   

c)  d)  

e)  

Figure 9. SOC comparison for the pulse test, measured at 25°C, obtained from: a) Model 1, b) Model 
2, c) Model 3, d) Model 4, e) Model 5. 
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b)   

c)  d)  

e)  

Figure 10. SOC comparison for the pulse test, measured at 45°C, obtained from: a) Model 1, b) Model 
2, c) Model 3, d) Model 4, e) Model 5. 

5. Discussion 
In this work, the NNs for SOC estimation were first designed from the network training and testing 
processes by employing battery data consisting of a variety of current steps with different amplitudes 
and lengths. As the used data is a simplification from the real-life loading conditions of battery, the 
established models obtained from the network training and testing were validated further with more 
realistic conditions. Validation results showed that the neural network based on wavelet decomposition 
was preferable for lithium-ion battery SOC estimation as the obtained SOC estimation and the 
experiments were consistent. Furthermore, Validation results demonstrated that the established models 
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simulated the battery SOC behaviour with great accuracy and robustness. Accuracy of SOC estimation 
gave satisfactory with a RMS error less than 2% for Model 1 to 4, as can be seen in Table 3. Moreover, 
Figures 9-10 shows that there was no presence of noise in the SOC estimation for both temperatures. 
Unlike our SOC estimation, using solely ANN methods gave noise, which is commonly appeared in 
ANN estimation, and lower accuracy as presented in [8] and [12]. This signified the pre-processing step 
as an important step in the construction of ANN model for SOC estimation. The wavelet transform was 
able to extract the chaotic components from the original data for the trained neural network. 
 Nevertheless, it can be seen in Figures 8e and 10e that SOC behaviour could not be accurately 
simulated. This makes estimation error for Model 5 relatively large with RMS error more than 20% for 
45°C. This was a result of not including the 45°C data in the training process and the proposed NN 
models were constructed through a normalisation of the data into the range [0,1]. This suggested that 
possible extreme battery conditions should be exposed to the network training. Unexpected extreme 
events like 45°C battery environment, in which the network did not experience, caused error and wrong 
estimation as shown in Figure 10e. Unlike Model 1-4, in which the trained network experienced possible 
scenarios of the testing and validating sets, the obtained SOC was accurately estimated as seen in Figures 
10a-10d. Hence, exposing all possible real-life loading conditions is crucial for data-driven approach 
like ANNs in order to obtain an accurate and robust model. 
 For future work, the merits of this method will be testified further by different temperature and field 
collected data in order to ensure the reliability of the purposed method. Other types of batteries can also 
be considered to investigate its adaptability. 

6. Conclusion 
In this work, the combining technique of ANN and wavelet decomposition was proposed for SOC 
estimation. The technique was tested on cylindrical lithium ion battery SOC data obtained from the 
experiments. In theory, it has been known that battery SOC is influenced by many factors. However, in 
this work, the experimental results showed that introducing four important factors such as the battery 
voltage, temperature, current and SOC at the previous time steps was sufficient for SOC estimation at 
the current time. Our training and testing results showed good agreement between the obtained SOC 
estimation from the wavelet-based ANN technique and the associated battery experiments. Likewise, 
no occurrence of unrealistic spikes in the output was noticed. This signifies the important role of wavelet 
transformation in the data pre-processing step of our technique. Furthermore, validation results showed 
that the established models simulated pulse discharging battery profile with great accuracy and 
robustness. 
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