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Abstract. The authors consider the flow between co-rotating disks, namely, the disks which 
rotate co-axially in the same direction at the same angular velocity, with a narrow gap enclosed 
by a stationary shroud at their circumferences. The flow often accompanies azimuthally-
fluctuating instabilities; a non-axisymmetric secondary flow nears the shroud. In this study, the 
authors experimentally and numerically research the flow in torus-vortex modes, in addition to 
core-shape modes. Specifically speaking, in experiments, the authors visualise the meridian 
plane (r-θ plane) and the midplane (r-z plane) between co-rotating disks, using a high-speed 
video camera and a YAG laser to carry out particle-image-velocimetry (PIV) analyses. Based 
on such PIV results, the torus-vortex modes and the core-shape modes are defined. On the 
basis of many experimental and numerical observations, the authors report stability diagrams to 
predict their occurrence and criteria for their frequencies. Furthermore, authors discuss the 
relation between the flow modes. 

1.  Introduction 
The flow in the neighborhood of a rotating disk is of practical importance, particularly in connection 
with rotary machines (Schlichting, 1979 [1]) common in turbo-machineries. The flow on a single 
infinite rotating disk or the flow between two infinite coaxially rotating disks have been studied by 
many researchers [2 – 6]. Then, the flow around a single and shrouded rotating disks with a finite radius 
and the flow between two finite co-axial rotating disks have been studied as well [7 – 11]. These flow 
problems can be found out in various fundamental industrial applications such as axial compressors, vane 
less diffusers, multiple-disk pumps and disk/drum-brake systems. In general, these types of flow tend to 
include non-axisymmetric secondary flows known as ‘stall propagations’ which occasionally cause disk 
vibrations and noises [12 – 15]. 

Now, we consider the flow between two co-rotating disks which rotate co-axially in the same 
direction at the same angular velocity with a narrow gap enclosed by a stationary shroud (or a 
stationary casing) at their circumferences. This flow is modelled on the flow inside the random-access 
disk-storage device of computers. The flow has been studied by many researchers [16 – 27], because, the 
flow is very complicated with three-dimensionality and turbulence. For example, when we visualise 
the flow on a plane between the disks (or the r-θ plane), we often see an azimuthally-fluctuating 
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instability which exhibits a non-axisymmetric secondary flow near the stationary shroud with a clear 
boundary. The clear boundary exists between the core region which is the laminar-flow region around 
the central hub and the outer region where the flow is turbulent near the stationary shroud. This clear 
boundary, hereinafter, referred to as a core boundary, between the core region and the outer region has 
a near-polygonal shape, such as hexagon, pentagon, square, triangle and ellipse, together with circle. 
The core-boundary shape rotates slightly slower than the disks, while the fluid in the core region 
rotates in a rigidly-rotational motion with the disks. On the other hand, when we visualise the flow in 
the meridional plane (or the r-z plane), we often see a pair of torus-vortex structures near the stationary 
shroud. 

In the present study, focusing upon the core-boundary shape, we classify the azimuthally-
fluctuating instability observed on the midplane between the disks (or the middle r-θ plane) into six 
flow modes as a function of the Reynolds number Re and two geometric parameters δ and κ. 
Hereinafter, these flow modes are referred to as core-shape modes CSMs. Furthermore, we also focus 
upon the other flow modes called as torus-vortex modes TVMs, in addition to CSMs. Then we 
conduct experiment and numerical analysis on the flow. And, we reveal the stability diagrams 
concerning both CSMs and TVMs of the flow. Especially in computations, we compare computational 
results with experimental results, and try to reveal the details of flow structure in each mode.  

2.  Methodology 
Figure 1 shows a side view of the present model. The model is composed of two coaxial rotating disks, 
cylindrical hub between them and a stationary peripheral shroud. The disks rotate in the same direction 
at the same angular velocity d with a narrow spacing G. In the present study, as non-dimensional 
system parameters, we choose a disk-tip Reynolds number Re ≡ dRd

2/ν, a gap aspect ratio δ ≡ G/Rd, a 
non-dimensional hub radius κ ≡ Rh/Rd and a non-dimensional peripheral radius λ ≡ Rw/Rd, where Rd 
and Rh are the radii of the rotating disk and the hub, respectively. Characteristic velocity is a disk-tip 
velocity Rdd. Tables 1 and 2 summarise the present experimental and computational parameters, 
respectively. 
 In experiments, we visualise both the midplane and the meridional plane, using a high-speed video 
camera and a YAG laser to carry out particle-image-velocimetry (referred to as PIV) analysis. For flow 
visualisation, the upper disk and the cylindrical container are transparent and the others are frosted. 
The flow between the disks is visualised using SiO2 particles coated by fluorescent paint, and it is 
recorded by a high-speed video camera above the disks for top view or beside the disks for side view.  
 In computations, we assume that Mach number Ma is much smaller than unity. Therefore, fluid is 
supposed to be incompressible. So, the governing equations are the incompressible unsteady Navier-
Stokes equations and the equation of continuity. These governing equations in a cylindrical coordinate 
system are solved by a finite difference method based on the MAC method for the coupling between ࢜ 
and p with the FTCS scheme using a staggered grid system.  
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Figure 1. Model, together with experimental parameters and coordinate system. 

 
 

Table 1. Experimental parameters. 
Disk-trip Reynolds number Re (≡ ΩdRd

2/ν) 1.4×103 – 1.4×105 

Gap aspect ratio δ (≡ G/Rd) 0.10 – 0.30 
Non-dimensional hub radius κ(≡ Rh/Rd) 0.11 

Non-dimensional enclosure radius λ (≡ Rw/Rd) 1.01 ≈ 1.0 
 

Table 2. Computational parameters. 
Disk-trip Reynolds number Re (≡ ΩdRd

2/ν) 1.4×103 – 1.4×104 

Gap aspect ratio δ (≡ G/Rd) 0.10 – 0.30 
Non-dimensional hub radius κ(≡ Rh/Rd) 0.11 

Non-dimensional enclosure radius λ (≡ Rw/Rd) 1.01 ≈ 1.0 
 

3.  Results and Discussion 

3.1.  Time-mean flow 
First of all, we examine (time-)mean flow, which has an axisymmetric structure in space. Figure 2 
shows an example of computational results: namely, radial profiles of mean velocities ̅ݒ௥, ̅ݒఏ and ̅ݒ௭ 
on the midplane (on the r-θ plane at z/G = 0.50), together with the experiment (a dashed line in the 
figure) and the computation (a chained line in the figure) by Humphrey et al. (1995) [21] whose Re 
and ߢ are larger than the present ones. A superscript “ ഥ ” represents to be time-mean over enough long 
time. A blue solid line in the figure denotes ̅ݒఏ in the rigid rotation like ̅ݒఏ ൌ   .ୢߗݎ

We can see that the fluid in such a wide inner region as r/Rd ≲ 0.8 is approximately in a rigidly-
rotational motion with the disks. On the other hand, in such a narrow outer region as r/Rd ≳ 0.8, the 
mean flow is three-dimensional and seems complicated. Besides, we can see that the present result 
almost agrees with Humphery et al.  

Figure 3 shows the flow on the meridional plane (the r-z plane); that is, the distributions of mean 
velocities ̅ݒ௥ in panel (a), ̅ݒఏ in panel (b) and ̅ݒ௭ in panel (c). In the inner region as r/Rd ≲ 0.8, ̅ݒ௥ and 
 ఏ is constant in the z direction, depending on r/Rd. Again, weݒ̅ ,௭ are almost zero, everywhere. Andݒ̅
can confirm that the fluid in the inner region is approximately in a rigid rotation. In the outer region at 
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r/Rd ≳ 0.8, we see two centrifugal currents at z/G ≈ 0.2 and 0.8 and one centripetal current at z/G ≈ 0.5 
in panel (a). As well, we see a pair of midplane-ward concentrating currents from the disks at r/Rd ≈ 
0.95 and a pair of disk-ward spreading currents from the midplane at r/Rd = 0.8 – 0.9 in panel (c). So, 
we can recognise a pair of torus vortices in the outer region.  

3.2.  Core-shape mode 
In this subsection, we define the core-shape mode CSM. Figure 4 shows the distributions of axial-
vorticity component ζz on the midplane by experiments (PIV analysis). Panels (a) – (g) are related with 
seven different Re and gap aspect ratio δ. And, we should note that the figures represent not mean but 
instantaneous flow at an instant. In figure 4, we can confirm a distinct boundary between an inner 
region at r/Rd ≲ 0.6 – 0.8 and an outer region near the shroud at r/Rd ≳ 0.6 – 0.8. We hereinafter refer 
to the inner region as “core region” and the distinct boundary’s geometry as “core shape.” In core 
region, ζz is almost twice d. So, in the core region, fluid is almost in a rigidly-rotational motion with 
d at any instant in any conditions, as well as mean flow shown in figures 2 and 3.  

In each panel in figure 4, we can see that the core shape is a nearly-polygonal. For further 
discussion, we now define the core-shape mode CSMs corresponding to the number of polygonal 
vertices of the boundary. For example, in Fig. 4(c), we can identify CSM6 because the boundary shape 
is hexagonal.     

By computations as well as experiments, we successfully identify these CSMs.  

3.3.  Torus-vortex mode 
 Based on the vortices’ structure in outer region on the meridional plane (the r-z plane), we classify 
the flow as follows.  
TVM1: A pair of torus vortices are steady, axisymmetric and symmetric about the midplane.  
TVM1A: A pair of torus vortices cyclically and alternately expand and contract mainly in the axial 
direction on a meridional plane.  
TVM1B: Remarkable features are similar with TVM1A, but the dominant directions of vortices’ 
expansion/contraction are not only axially but also radially.  
TVM2: A pair of torus vortices are steady and axisymmetric, but asymmetric about the midplane.  
TVM2B: As well as TVM2, a pair of vortices remain asymmetric. However, the vortices are not 
steady but unsteady, expanding/contracting axially and radially. 
TVM3: It is hard to confirm a pair of torus vortices, clearly. Fluctuations of the vortices are not 
periodic, but random. 
 

  
 
 
 
 
 
 
 
 
 
 
 

 
.

Figure 2. Radial profiles of mean velocity 
components (for Re = 2.7x103, δ = 0.10, κ = 
0.11, λ = 1.0 and z/G = 0.50 by computation). 

 Figure 3. Distributions of mean velocity on 
the meridional plane (for Re = 2.7x103, δ = 
0.10, κ = 0.11 and λ = 1.0 by computation)
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 As an example of TVMs, figure 5 shows the distributions of circumferential-vorticity component 
ζθ in TVM2B by experiment. Of course, we have confirmed that computational results well correspond 
to the experimental ones. In figure 5, positive and negative vortex structures are asymmetric about the 
midplane and unsteady. 

3.4.  Stability diagram 
Now, we reveal the stability diagram concerning both the core-shape modes CSMs and the torus-

vortex modes TVMs, for the non-dimensional hub radius κ = 0.11 and λ =1.0 in wide ranges of other two 
system parameters of the disk-tip Reynolds number Re and the gap aspect ratio δ.  

Figure 6 shows a stability diagram of CSMs and TVMs on the Re-δ space. Green zones represent each 
CSMs stable region and blank zones by experiment between the green zones show transition regions where 
we could not determine CSM. Also, red solid lines denote the border between TVMs stable regions by 
experiment.  
 

 

 
 

 
 
 
 
 
 
 

Figure 4.  Core-shape modes CSM’s: distributions 
of vorticity ζz on the midplane between disks (on the 
r-θ plane at z/G = 0.50 for κ = 0.11 and λ =1.0 by 
experiment). 

 Figure 5. Distributions of vorticity 
denseness on the meridional plane (r-z 
plane) in time sequence (for Re = 5.4x103 
and δ = 0.3 in TVM2B by experiment) 
 

 

 
Figure 6. Stability diagram of both core-shape modes CSM∞ – CSM2 and torus-vortex modes TVM1 
– TVM3 (for κ = 0.11 and λ = 1.0 by experiment and computation). 

About CSMs, the increases of Re and δ tend to decrease the modal number of CSM. About 
TVMs, the increases of Re is apt to enhance the irregularity of the TVM (axisymmetry, unsteadiness 
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and periodicity). The increase of δ influences the asymmetry about midplane. The increase of the Re 
promotes the non-axisymmetry of TVM 2 and TVM 2B, the aperiodicity of TVM 3 and the amplitude 
of the periodic oscillation of TVM 1A, TVM 1B and TVM 2B. The parameter δ has the influences 
similar to that of Re.  

For reference, figure 6 shows the comparison between the numerical result and the experimental 
result on the stability diagram of CSMs and TVMs for λ =1.0 and κ = 0.11. The number above each 
symbol denotes the modal number of CSM and blue solid lines denote the border between TVMs 
stable regions in computation. The Green regions and the red solid lines are the same as those in figure 
7. In figure 8, the boundary between TVM1A and 1B or TVM 2 and 2B exists near the boundary 
where CSM’s modal number changes from ∞ to some number. So it is considered that the torus vortex 
structure became unsteady when core shape changes from circular to polygonal, because CSM’s 
modal number shows the number of core vertices and these boundary between TVMs relate to the 
magnitude of radial fluctuation of torus vortex structures. 

As a result, we can see good agreement between the experimental and computational results 
concerning both CSM and TVM in figure 6.  

3.5.  Three-dimensional flow structure 
Numerical analysis is useful to investigate the concerning flow in detail. In general, it is difficult to 
estimate numerical accuracy for non-linear phenomena such as the cornering flow. However, we have 
confirmed it by the comparison with experimental results.  

In order to examine three dimensional structure of the concerning flow, we visualize the flow to 
use second invariant of Q velocity-gradient tensor. Figures 9 – 12 show some examples obtained by 
computation to visualise the whole three-dimensional structures of the concerning flows.  

At first, figure 7 exhibits the flow at Re = 1.4x103, δ = 0.10, κ = 0.11 and λ = 1.0. The flow is in 
CSM∞ and TVM1. Then, the flow is in axsymmetry, steady and in the symmetry about midplane. This 
well corresponds to figure 7. Second, figure 8 presents the flow at Re = 2.7x103, δ = 0.30, κ = 0.11 and 
λ = 1.0. The flow is in CSM∞ and TVM2. Then, the flow is in axsymmetry and steady, but in 
asymmetry about midplane in contrast with figure 7. Thirdly, figure 9 represents the flow at Re = 
4.1x103, δ = 0.15, κ = 0.11 and λ = 1.0. The flow is in CSM∞ and TVM1A. In outer region, we can 
find a pair of azimuthally-fluctuating torus vortices with a constant interval between neighboring 
nodes. These torus vortices rotate in the same direction as disks with lower angular velocity than 
disks’. This flow structure in the outer region is known as the shift-and-reflect symmetry reported by 
Herero et al. (1999). Finally, figure 10 exhibits the flow at Re = 8.2x103, δ = 0.15, κ = 0.11 and λ = 1.0. 
The flow is in CSM6 and TVM1B. In contrast with TVM1A, the flow is disturbed in radial direction. 
Besides, the core has an almost hexagonal boundary, and the fluid inside the core is in the rigid 
rotation with disks. In this figure, disks, the core boundary and the outer-region vortical structures 
rotate not with the same speed but with three different speeds. This will be discussed in the next 
section. 

3.6.  Rotation speeds of core shape and outer vortices 
In order to investigate the rotation speeds of the core-boundary vertex and the outer-region vortical 
structure more precisely, we introduce two inspection conditions IC1 and IC2. IC1 is to reveal the Re’s 
effect, and IC2 is to reveal the δ’s effect. Namely, in IC1, (Re, δ) = (6.8x103 – 1.2x104, 0.10), and in 
IC2, (Re, δ) = (about 5x103 (to be strict, 4.1x103 – 6.8x103), 0.10 – 0.30).  

Figures 11 and 12 show non-dimensional angular velocities ωc/Ωd of the core shape and ωo/Ωd 
of outer-vortices. Figure 11 and 12 are in IC1 and IC2, respectively.  

In figure 11, ωc/Ωd ≈ 0.85, except for Re = 5.5x103 where ωc/Ωd ≈ 0.6. And, ωo/Ωd is always 
constant to about 0.6, being independent of Re. Now, we assume that ωc and ωo are intrinsically about 
0.85 and 0.6, respectively. Under this assumption, we can regard that ωc synchronises with ωo for Re = 
5.5x103, and that ωc does not synchronise with ωo for Re > 5.5x103. Hereinafter, the former is referred 
to as “low-ω-synchronisation,” and the latter is referred to as “anti-synchronisation.” 
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In figure 12, ωc/Ωd ≈ 0.6, except for δ = 0.20 where ωc/Ωd ≈ 0.85. And, ωo/Ωd always coincides 
with ωc/Ωd , being independent of δ. So, the low-ω-synchronisation appears except for δ = 0.20. For δ 
= 0.20, we can consider that ωo/Ωd synchronises with ωc/Ωd. Hereinafter, this is referred to as “high-ω-
synchronisation.”  

Figure 13 shows the appearance concerning the high-ω-synchronisation, the low-ω-
synchronisation and anti-synchronisation on the Re-δ plane, together with the stability diagrams of 
CSMs and TVMs. Either of the high-ω-synchronisation or the anti-synchronisation appears, when the 
flow is unsteady. And, the high-ω-synchronisation is exceptional. These results suggest that the 
slower-rotational motion with about 0.6Ωd is usually observed. And, in addition to the slower 
rotational motion, the faster-rotation motion with about 0.85Ωd tends to be observed, when the flow is 
in TVM1B which is possibly linked to the complexity of the CSMs.  
    Furthermore, mean velocity ̅ݒఏ at the center of the outer-region is close to 0.6RdΩd as shown in 
figure 2. This seems acceptable, if we suppose the vortical structures in the outer-region advect with 
an average speed of the outer-region. This supports such an assumption as ωc and ωo are trinsically 
around 0.85 and 0.6, respectively.  

 
 

  

Figure 7. Iso-surfaces for Q = 0.75 at an 
instant in CSM∞ and TVM1 at Re = 1.4x103, δ 
= 0.10, κ = 0.11 and λ = 1.0 by computation.

 Figure 8. Iso-surfaces for Q = 1.5 at an 
instant in CSM∞ and TVM2 at Re = 2.7x103, 
δ = 0.30, κ = 0.11 and λ = 1.0 by computation.

 
  

Figure 9. Iso-surfaces for Q = 1.5 at an instant 
in CSM∞ and TVM1A at Re = 4.1x103, δ = 
0.15, κ = 0.11 and λ = 1.0 by computation.

 Figure. 10. Iso-surfaces for Q = 2.0 at an 
instant in CSM6 and TVM1B at Re = 8.2x103, 
δ = 0.15, κ = 0.11 and λ = 1.0 by computation.
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Figure 11. Non-dimensional angular velocities 
of core-boundary and outer-vortex in IC1 (for 
Re = 6800 – 12240 and δ = 0.10 by 
computation). 

 Figure 12. Non-dimensional angular velocity 
of core-boundary and outer-vortex in IC2 (for 
Re ≈ 5000(4080 – 6800) and δ = 0.10 – 0.30 
by computation).

 
 

 
Figure 13. Appearance concerning high-ω-synchronisation, low-ω-synchronisation and anti-
synchronisation, together with stability diagrams of CSMs and TVMs (for κ = 0.11 and λ = 1.0 by 
computation). 

 
 

4.  Conclusion 
Obtained results are as follows. 

1. In the inner region within 70 – 80% of the disk radius, the flow rotates almost rigidly with the 
disk. 

2. Core shape mode CSM and torus vortex mode TVM are classified into six types. 
3. The increases of Re and δ tend to decrease the modal number of CSM. 
4. About TVMs, the increases of Re is apt to enhance the irregularity (axisymmetry, unsteadiness 

and periodicity) and the increase of δ influences the asymmetry about midplane. 
5. The torus vortex structure became unsteady when core shape changes from circular to polygonal. 
6. The experimental and computational results concerning both CSM and TVM agree well.. 
7. Angular velocity in the core region ωc and outer region ωo are intrinsically around 0.85 and 0.6, 

respectively 
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